Применения дизельных двигателей на грузовых автомобилях. Дизельный двигатель – история и развитие

В последнее десятилетие дизельные технологии развиваются впечатляющими темпами. Модификации легковых авто с дизельными моторами составляют половину новых автомобилей, продаваемых в Европе. Густой черный дым из выхлопной трубы, громкое тарахтение и неприятный запах остались далеко в прошлом. Дизельные моторы сегодня – это не только экономичность, но также высокая мощность и достойные динамические характеристики.

Современный дизель стал тихим и экологически чистым. Как же удалось этому типу ДВС соответствовать постоянно ужесточающимся нормам токсичности и при этом не только не проигрывать в тяговитости и экономичности, но и улучшать эти показатели? Рассмотрим все по порядку…

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового – те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте.

В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре – отсюда повышенная шумность и жесткость работы дизеля.

Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

Конструкция

Особенности

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки – ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей - это поршень.

Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода.

Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

Типы камер сгорания

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные .

Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.


При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.

Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в
цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Системы питания

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.


Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.

Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название – рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.

Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима.

Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.

Кардинально изменить ситуацию могла только оптимизация процесса горения топливо – воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом.

В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.


В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы .

Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок.

Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.


Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска.

Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам.

Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок – высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд».

Для дизеля - двигателя с воспламенением топлива от сжатия - это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля.

Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Турбодизель

Эффективным средством повышения мощности и гибкости работы является турбонаддув двигателя . Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором.

На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха – интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя – в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности.

В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Свечи – прибор, воспламеняющий топливную смесь в камере сгорания цилиндров двигателя. Искрообразование очень важный

Электронная система автомобиля состоит из блоков управления и многочисленных датчиков, объединенных в единую сеть

Принцип работы которого основан на самовоспламенении топлива при воздействии горячего сжатого воздуха.

Конструкция дизеля в целом мало чем отличается от бензинового двигателя , за исключением того, что в дизеле отсутствует как таковая система зажигания, поскольку воспламенение топлива происходит по другому принципу. Не от искры, как в бензиновом двигателе, а от высокого давления, с помощью которого сжимается воздух, из-за чего тот сильно разогревается. Высокое давление в камере сгорания накладывает особые требования к изготовлению деталей клапанов, которые предназначены для восприятия более серьезных нагрузок (от 20 до 24 единиц).

Дизельные двигатели применяются не только на грузовых, но и на многих моделях легковых автомобилей. Дизели могут работать на различных типах топлива - на рапсовом и пальмовом масле, на фракционных веществах и на чистой нефти.

Принцип действия дизельного двигателя

Принцип действия дизеля основан на компрессионном воспламенении топлива, которое попадает в камеру сгорания и смешивается с горячей воздушной массой. Рабочий процесс дизеля зависит исключительно от неоднородности ТВС (топливно-воздушной смеси). Подача ТВС в таком типе двигателя происходит раздельно.

Вначале подается воздух, который в процессе сжатия нагревается до высоких температур (около 800 градусов по Цельсию) , затем в камеру сгорания под высоким давлением (10-30 МПа) подается топливо, после чего происходит его самовоспламенение.

Сам процесс воспламенения топлива всегда сопровождается высокими уровнем вибраций и шума, поэтому двигатели дизельного типа являются более шумными в сравнении с бензиновыми собратьями.

Подобный принцип работы дизеля позволяет использовать более доступные и дешевые (до недавнего времени:)) виды топлива, снижая уровень затрат на его обслуживание и заправку .

Дизели могут иметь как 2, так и 4 рабочих такта (впуск, сжатие, рабочий ход и выпуск). Большинство автомобилей оснащено 4-х тактовыми дизельными двигателями.

Типы дизельных двигателей

По конструкционным особенностям камер сгорания дизели можно разделить на три типа:

  • С разделенной камерой сгорания. В таких устройствах подача топлива осуществляется не в основную, а в дополнительную, т.н. вихревую камеру, которая располагается в головке цилиндрового блока и соединяется с цилиндром каналом. При попадании в вихревую камеру воздушная масса максимально сжимается, тем самым улучшая процесс воспламенения топлива. Процесс самовоспламенения начинается в вихревой камере, затем переходит в основную камеру сгорания.
  • С неразделенной камерой сгорания. В таких дизелях камера располагается в поршне, а топливо подается в пространство над поршнем . Нераздельные камеры сгорания с одной стороны позволяют экономить расход топлива, с другой стороны - повышают уровень шума при работе двигателя.
  • Двигатели предкамерные. Подобные дизели оснащаются вставной форкамерой, которая соединяется с цилиндром тонкими каналами. Форма и размер каналов определяют скорость движения газов при сгорании топлива, снижая уровень шума и токсичности, увеличивая ресурс работы двигателя.

Топливная система в дизельном двигателе

Основой любого двигателя дизельного типа является его топливная система. Основной задачей топливной системы является своевременная подача нужного количества топливной смеси под заданным рабочим давлением.

Важными элементами топливной системы в дизельном двигателе являются:

  • насос высокого давления для подачи топлива (ТНВД);
  • топливный фильтр;
  • форсунки

Топливный насос

Насос отвечает за подачу топлива к форсункам по установленным параметрам (в зависимости от числа оборотов, рабочего положения регуляторного рычага и давления турбонаддува). В современных дизельных двигателях могут применяться два типа насосов для топлива - рядные (плунжерные) и распределительные.

Топливный фильтр

Фильтр является важной составляющей частью двигателя дизельного типа. Топливный фильтр подбирается строго в соответствии с типом двигателя. Фильтр предназначен для выделения и удаления из топлива воды, и лишнего воздуха из топливной системы.

Форсунки

Форсунки не менее важные элементы топливной системы в дизеле. Своевременная подача топливной смеси в камеру сгорания возможна только при взаимодействии топливного насоса и форсунок. В дизелях применяются два типа форсунок - с многодырчатым и шрифтовым распределителем. Распределитель форсунок определяет форму факела, обеспечивая более эффективный процесс самовоспламенения.

Холодный пуск и турбонаддув дизельного двигателя

Холодный пуск отвечает за механизм предпускового подогрева. Это обеспечивается за счет электрических нагревательных элементов - свечей накаливания, которыми оснащена камера сгорания. При запуске двигателя свечи накаливания достигают температуры в 900 градусов, подогревая воздушную массу, которая попадает в камеру сгорания. Питание со свечи накаливания снимается через 15 секунд после запуска двигателя. Системы подогрева перед запуском двигателя обеспечивают его безопасный запуск даже при низких атмосферных температурах.

Турбонаддув отвечает за повышение мощности и эффективности работы дизеля. Он обеспечивает подачу большего количества воздуха для более эффективного процесса сгорания топливной смеси и увеличения рабочей мощности двигателя. Для обеспечения нужного давления наддува воздушной смеси во всех рабочих режимах двигателя применяется специальный турбонагнетатель.

Остается только сказать, что споры относительно того, что лучше выбрать рядовому автолюбителю в качестве силовой установки в свой автомобиль, бензин или дизель , не утихают до сих пор. Преимущества и недостатки есть у обоих типов двигателя и выбирать необходимо, исходя из конкретных условий эксплуатации автомобиля.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Топливо для дизелей, конструкция и работа системы питания дизеля топливом и воздухом, система выпуска отработавших газов, топливный насос высокого давления, форсунки. Топливо для газовых двигателей, конструкция и работа систем питания газовых двигателей.

    реферат , добавлен 29.01.2010

    Общие принципы работы тепловозных дизелей. Идеальный цикл Карно. Схемы устройства, принципов работы и индикаторные диаграммы четырехтактного дизеля. Дизельное топливо и варианты наддува цилиндров. Состав сырой нефти. Схема роторного нагнетателя воздуха.

    курсовая работа , добавлен 27.07.2013

    Характеристика основных вспомогательных систем тепловозных дизелей - топливной, водяной и масляной. Назначение фильтров предварительной, грубой и тонкой очистки топлива. Конструкция приборов для забора, очистки воздуха и выпуска отработавших газов.

    реферат , добавлен 27.07.2013

    Устройство и назначение системы питания двигателя КамАЗ–740. Основные механизмы, узлы и неисправности системы питания двигателя, ее техническое обслуживание и текущий ремонт. Система выпуска отработанных газов. Фильтры грубой и тонкой очистки топлива.

    реферат , добавлен 31.05.2015

    Назначение системы питания дизельного двигателя. Методы, средства и оборудование для диагностирования системы питания дизельного двигателя грузовых автомобилей. Принцип работы турбокомпрессора. Техническое обслуживание и ремонт грузовых автомобилей.

    курсовая работа , добавлен 11.04.2015

    Устройство системы питания дизельного двигателя. Фильтр тонкой очистки топлива и питание дизеля КамАЗ-740 воздухом. Основные возможные неисправности в системе, способы их устранения. Перечень работ при техническом обслуживании, технологическая карта.

    контрольная работа , добавлен 09.12.2012

    Основные размерения судна. Технические характеристики оборудования. Физико-химические показатели топлива. Анализ маслоиспользования и водоиспользования. Система пожаротушения углекислым газом. Диагностика дизелей. Автоматическая водораспыливающая система.

    отчет по практике , добавлен 17.03.2016

Среди двигателей внутреннего сгорания широкое распространение приобрели дизельные двигатели. Такая популярность объясняется, прежде всего, их высокой эффективностью и связанной с этим экономичностью. Дизельный двигатель обеспечивает более высокий пробег автомобиля. Его использование в большегрузных автомобилях и оборудовании становится очевидным.

В области строительных и сельскохозяйственных машин дизель давно нашел многообразное применение. При определении параметров этих моторов, кроме особенно высокого значения экономичности, разработчики обращают внимание на прочность, надежность и удобство обслуживания. Максимальная мощность и оптимизация шума здесь имеют меньшее значение, чем, например, на легковых автомобилях. На строительной и сельскохозяйственной технике используются дизели самой разнообразной мощности - от 3 кВт до величин, превышающих значения, характерные для тяжелых грузовых автомобилей. Купить новые заводские двигатели А-01, А-41 можно на https://agro-tm.ru компании ООО «СОЮЗАГРОТЕХМАШ». В строительных и сельскохозяйственных во многих случаях еще применяются системы впрыска с механическим регулятором. В отличие от других областей, где используются преимущественно двигатели жидкостного охлаждения, здесь широко распространена надежная и простая в эксплуатации система воздушного охлаждения.

Применение и использование дизельных двигателей

Дизельные моторы обычно применяются в качестве двигателей с механическим регулятором, тепловых генераторов и мобильных источников питания. Они широко используются в локомотивах, строительной технике, автомобилях и бесчисленном количестве промышленного оборудования. Область их применения охватывает практически все сферы промышленности. Заглянув внутрь практически любой машины, мимо которой он проходит каждый день, человек обнаружит дизельный двигатель. Промышленные дизельные двигатели и дизельные генераторы применяются в строительстве, морском, горном деле, медицине, лесоводстве, телекоммуникациях, подземных работах и сельском хозяйстве, и это лишь малая часть. Выработка электроэнергии для основного или дополнительного резервного питания - основная область использования современных дизельных двигателей.

Существует ряд факторов, которые выгодно выделяют дизельные двигатели:

  • экономичность. КПД в 40% (до 50% с применением турбонаддува) просто недосягаемый показатель для бензинового двигателя;
  • мощность. Практически весь крутящий момент доступен на самых низких оборотах. Турбированный дизельный двигатель не имеет ярко выраженной турбоямы. Такая особенность позволяет получить настоящее удовольствие от вождения;
  • надежность. Пробег самых надежных дизельных двигателей доходит до 700 тыс. км. И все это без ощутимых негативных последствий. Благодаря своей безотказности, дизельные ДВС ставят на спецтехнику и грузовики;
  • экологичность. В борьбе за сохранность окружающей среды дизельный двигатель превосходит бензиновые моторы. Меньшее количество выбрасываемого СО и использование технологии рециркуляции выхлопных газов (EGR) приносят минимум вреда.

Дизельный двигатель постепенно теряется на фоне современных разработок в мировом автопроме, сдавая позиции перед многочисленными запретами и ограничениями. А ведь именно дизельный двигатель стал настоящим прорывом в автомобильной промышленности, и заслуживает того, дабы мы еще раз вспомнили старого друга, благодаря которому огромные расстояния перестали быть проблемой для человечества.

История создания дизельного двигателя.

Для начала напомним, что дизельный двигатель – это уникальный механизм, направленный на получение энергии внутреннего сгорания. Спектр используемого топлива для дизелей очень широк, и включает в себя даже растительные варианты горючего (масла и жир).

Предпосылкой для создания дизельного двигателя стала идея цикла Карно (1824 г.), которая заключалась в процессе теплообмена с максимальным КПД на выходе. Более современный вид эта идея получила в 1890 году, когда знаменитый Рудольф Дизель создал практический образец реализации цикла Карно, а в 1892 году, он уже получил патент на создание данного вида двигателя. Первый действующий образец движка был создан Дизелем в начале 1897 года, а в конце января он уже подвергся испытаниям.

В начале своего пути, дизельный двигатель значительно уступал паровому в плане размеров, и не имел успеха в практическом применении. Первые образцы двигателей работали исключительно на легких нефтепродуктах и маслах. Но были попытки запускать двигатель и на угольном топливе, что повлекло за собой полный провал, из-за проблем с подачей угольной пыли в цилиндры.

В 1898 году, в Петербурге также был сконструирован двигатель, который по своему принципу был полностью схож с дизельным. В России данный тип механизма получил название «Тринклер-мотор», который по своим характеристикам, согласно испытаниям, был гораздо более совершенным, чем немецкий аналог. Преимуществом «Тринклер-мотора» стало использование гидравлики, которая значительно улучшала показатели по сравнению с воздушным компрессором. Плюс, сама конструкция была в разы проще и надежнее немецкой.

В том же 1898 году, Эммануил Нобель выкупил права на производство дизельного двигателя, который был усовершенствован, и работал уже на нефти. А на рубеже веков, гениальный российский инженер Аршаулов, изобрел уникальную систему – топливный насос высокого давления, что также стало прорывом в процессе усовершенствования дизельного двигателя.

В двадцатых годах 20-го века, немецкий ученый Роберт Бош провел еще одно усовершенствование топливного насоса высокого давления, а также создал уникальную конструкцию бескомпрессорной конструкции. С тех пор, дизельные двигатели начали получать массовое распространение, и использоваться в общественном транспорте и железной дороге, а 50-60-е годы, дизельные двигатели массово используются при сборке обычных пассажирских автомобилей.

Принцип работы дизельных двигателей.

Существуют два варианта работы дизелей:

  • Двухтактный цикл;
  • Четырехтактный цикл.

Наиболее популярен четырехтактный цикл работы дизельных двигателей: впуск (поступления воздуха в цилиндр), сжатие (в цилиндре сжимается воздух), рабочий ход (процесс сгорания топлива в цилиндре), выпуск (выход отработанных газов из цилиндра). Данный цикл является бесконечным, и постоянно повторяется с механической точностью в процессе работы двигателя.

Двухтактный цикл работы двигателя отличается укороченными процессами, где газообмен осуществляется в продувке, едином процессе работы механизма. Такие двигатели применяются в морских судах и железнодорожном транспорте. Двухтактные двигатели строятся исключительно с неразделенными камерами сгорания.

Преимущества и недостатки.

Мощность КПД современных дизелей составляет 40-45 %, а некоторых образцов – 50%. Несомненным плюсом таких двигателей являются низкие требования к качеству топлива, что позволяет использовать не самые дорогие нефтяные продукты для работы механизма.

При использовании дизелей в автомобилях, такой двигатель дает высокий вращающийся момент, при низких оборотах самого механизма, что делает авто комфортным в движении. Благодаря этому данный тип движка и популярен в промышленных автомобилях, где ценится мощь механизма.

Дизельные двигатели имеют гораздо меньшую вероятность возгорания, благодаря нелетучему топливу, что делает их максимально безопасными при эксплуатации. Именно дизельные двигатели стали залогом для прогресса военной бронированной техники, делая ее максимально безопасной для экипажа.

Недостатков у дизеля также хватает, и заключаются они в топливе, которое имеет свойство застаиваться в зимнее время, и выводит механизм из строя. Плюс ко всему, дизельные двигатели делают слишком много вредных выбросов в атмосферу, что и стало причиной борьбы экологов с данным типом механизма. Само изготовление дизельного двигателя обходится производителям дороже, чем бензинового, что заметно отображается на бюджетных затратах производства.

Эти основные моменты и послужили причиной того, что количество дизельных двигателей в мировом машиностроительстве будет уменьшаться и, с большой долей вероятности, ограничится лишь промышленным автопромом, где дизель является незаменимым агрегатом. Но, именно дизель оставил глубокий след в процессе создания автопромышленности, как таковой, и всегда будет оставаться важнейшим прорывом в мировой автомобильной инженерии.

Вконтакте