Чему равны реактивные сопротивления катушки и конденсатора. Параллельное соединение катушки и конденсатора

При последовательном соединении катушки и конденсатора на расчетной схеме каждый из этих элементов электрической цепи может быть представлен активным и реактивным сопротивлениями или активной и реактивной проводимостями.

Для расчета более простой является схема рис. 14.1, а, где элементы соединены последовательно, а в схеме рис. 14.1, б они соединены смешанно.

Предположим известными параметры катушки R1, L и конденсатора R2, C; ток в цепи i = I m sinωt .

Требуется определить напряжение на участках цепи и мощность.

Векторная диаграмма и полное сопротивление цели

Мгновенную величину общего напряжения можно представить суммой мгновенных напряжений на отдельных элементах схемы:

u = u 1R + u L + u C + u 2R ,

Имея в виду несовпадение по фазе активных и реактивных напряжений, общее напряжение получим векторным сложением:

U = U 2R + U L + U C +U 2R

Для построения векторной диаграммы находим:

U 1R = IR 1 ; U 2R = IR 2 ; U L = IX L ; U C = IX C .

В зависимости от соотношения величин реактивных сопротивлений индуктивности и емкости можно отметить три случая:

1. Х L >Х C . Для этого случая векторная диаграмма представлена на рис. 14.2. На диаграмме построены треугольники напряжений для катушки и конденсатора и найдены векторы напряжения U 1 и U 2 на этих элементах.

Векторная сумма напряжений U 1 + U 2 = U дает общее напряжение в цепи. Вместе с тем вектор U является гипотенузой прямоугольного треугольника напряжений, катеты которого - активное и реактивное напряжения цепи (U а и U р ). Так как векторы активных составляющих напряжения направлены в одну сторону, их численные значения складываются: U a = U 1R + U 2R.

Векторы реактивных составляющих напряжения направлены по одной прямой в противоположные стороны, поэтому им придают разные знаки: реактивное напряжение индуктивности считают положительным, а напряжение емкости - отрицательным: U р = U L — U C .

При одинаковом токе во всех элементах цепи U L >U C . Ток отстает от общего напряжения по фазе на угол φ . Из треугольника напряжений следует

где R = R 1 + R 2 и X = X L — X C общее и активное и реактивное сопротивление цепи. Полное сопротивление цепи — Z.

Эти сопротивления графически можно изобразить сторонами прямоугольного треугольника сопротивлений, который получают уже известным способом из треугольника напряжений.

Полное сопротивление цепи Z является коэффициентом пропорциональности между действующими величинами тока и общего напряжения цепи:

U = IZ; I = U/Z; Z = U/I.

Из треугольников напряжения и сопротивлений определяют следующие величины:

Угол сдвига по фазе между напряжением и током в цепи положительный (φ >0) (фазовые токи отсчитываются от вектора тока).

2. Х L < Х C Векторная диаграмма изображена на рис. 14.3, где U L φ <0.

Р е активное сопротивление цепи носит емкостный характер .

Расчетные формулы для первого случая остаются без изменения и для второго случая.

3. X L = Х C . В этом случае реактивные составляющие напряжения катушки и конденсатора равны по величине и взаимно компенсированы: U L = U C (рис. 14.4). Поэтому реактивная составляющая общего напряжения и общее реактивное сопротивление равны нулю, а полное сопротивление цепи Z = R.

Общее напряжение совпадает по фазе с током и равно по величине активной

составляющей напряжения.

Угол φ сдвига фаз между током и общим напряжением равен нулю.

Ток в цепи и общее напряжение связаны формулой

U = IR, или I = U/R.

В случае X L = Х C в цепи имеет место явление резонанса напряжений.

Энергетический процесс в цепи с последовательном соединении конденсатора и катушки

Из треугольника напряжений легко получить треугольник мощностей из которого следуют уже известные формулы:

Реактивные мощности входят в расчеты также с разными знаками: индуктивная мощность положительна, а емкостная — отрицательна.

В соответствии с этим знак реактивной мощности всей цепи может быть тем или другим, что следует и из формул (14.2).
При φ>0 Q>0 ; при φ<0 Q<0.

Активная мощность положительна при любом угле, так как cosφ = cos(-φ ).

Полная мощность также всегда положительна. На основании формул (14.2) можно сделать вывод, что в рассматриваемой цепи совершается преобразование электрической энергии (Р ≠ 0) и обменный процесс между генератором и приемником (Q ≠ 0 при φ ≠ 0).

Энергетические процессы в данном случае сложнее, чем в ранее рассмотренных простых цепях. Усложнение объясняется тем, что наряду с обменом энергией между генератором и приемником совершается обмен энергией внутри приемника, между катушкой и конденсатором.

Особенности энергетического процесса в цепи с последовательным соединением катушки и конденсаторов отражены на рис. 14.5, где показаны графики мгновенной мощности отдельных элементов и цепи в целом при X L = Х С .

Катушка и конденсатор в течение полупериода накапливают равные количества энергии. Однако в первую четверть периода, когда ток увеличивается, а напряжение на конденсаторе уменьшается, энергия накапливается в магнитном поле катушки и уменьшается в электрическом поле конденсатора, причем скорость изменения энергии (мощность) в любой момент времени одинакова. Это дает основание считать, что обмен энергией происходит только в приемнике между катушками
и конденсатором.

Для преобразования электрической энергии в другой вид приемник получает ее от генератора со средней скоростью (мощностью) Р.

Задачи по теме и пример решения задачи для схемы с последовательным соединением конденсатора и катушки


Рис. 4.12. Рис. 4.13


если ток, подаваемый в схему, которая содержит катушку, резко увеличить, то ток в схеме будет нарастать плавно до достижения своего мак­симального значения.

Способность катушки индуктивности препятствовать изменению силы тока, протекающего через нее, носит название индуктивности этой катушки. Индуктивность обозначается буквой L , единицей ее измерения является генри (Гн).

Постоянная времени -цепи

На рис. 4.13 последовательная цепочка из конденсатора и резистора соединяется через ключ с источником питания. Когда ключ находится в положении 1, конденсатор постепенно заряжается через сопротивление, пока напряжение на нем не достигнет уровня Е т. е. ЭДС или напряжения источника питания.

Процесс заряда конденсатора показан на рис. 4.14(а) экспоненциальной кривой. Время, за которое напряжение на конденсаторе достигает значения 0,63 от максимума, т. е. в данном случае 0,63Е , называется постоянной времени контура или цепи.

Вернемся к рис. 4.13. Если ключ установить в положение 2, конденсатор будет сохранять запасенную энергию. При переведении ключа в положение3 конденсатор начинает разряжаться на землю через резистор R, и напряжение на нем постепенно падает до нуля. Процесс разряда конденсаторапоказан на рис. 4.14(б). В этом случае постоянной времени цепи называется время, за которое напряжение на конденсаторе уменьшается 0,63 от своего максимального значения.



Рис. 4.14. Кривые заряда (а) и разряда (б) конденсатора, где t - постоянная времени.

Как для случая заряда, так и для случая разряда конденсатора через резистор R постоянная времени цепи выражается формулой

где t - постоянная времени в секундах, С - емкость в фарадах, R - сопротивление, выраженное в омах.

Например, для случая С = 10мкФ и R = 10 кОм постоянная времени цепи равна

На рис. 4.15 изображены графики процессов заряда для цепей с малой и с большой постоянной времени.



Рис. 4.15.

Постоянная времени RL -цепи

Рассмотрим схему, изображенную на рис. 4.16. Катушка индуктивности L соединена последовательно с резистором R , имеющим сопротивление 1 кОм. В момент замыкания ключа S ток в цепи равен нулю, хотя под действиемЭДС источника он, казалось бы, должен резко увеличиться. Однако катушка индуктивности, как известно, препятствует всякому изменению силы тока, протекающего через нее, поэтому ток в цепи будет возрастать по экспоненциальному закону, как показано на рис. 4.17. Ток будет возрастать до тех пор, пока не достигнет своего максимального значения. После этого увеличение тока прекратится, а падение напряжения на резисторе R станет равным приложенному напряжению Е. Установившееся значение тока равно

E/ R = 20 В/1 кОм = 20 мА.

Скорость изменения тока в цепи зависит от конкретных значений R и L . Время, необходимое для того, чтобы сила тока достигла значения, равного 0,63 от его максимальной величины, носит название постоянной времени цепи. Постоянная времени вычисляется по формуле L/ R где L выражается в генри, а R - в омах. В этом случае постоянная времени получается в секундах. Используя значения L и R , указанные на рисунке, получаем

Следует заметить, что, чем больше R , тем меньше L/R и тем быстрее изменяется ток в цепи.



Рис. 4.16.



Рис. 4.17.

Сопротивление по постоянному току

Катушка индуктивности, включенная в цепь, не препятствует протеканию постоянного тока, если, конечно, но принимать во внимание очень малое сопротивление провода, из которого она сделана. Следовательно, катушка индуктивности имеет нулевое или очень малое сопротивление и может рассматриваться в цепи постоянного тока как цепь короткого замыкания. Конденсатор же в связи с наличием в нем изолирующего ди­электрика имеет бесконечное или очень большое сопротивление и может рассматриваться в цепи постоянного тока как разрыв.

Векторное представление

Сигнал синусоидальной формы может быть представлен в виде век­тора ОА, вращающегося против часовой стрелки с угловой скоростью ω = 2πf , где f – частота сигнала (рис. 4.18). По мере того как поворачивается вектор, ордината его конца характеризует показанный на рисунке синусоидальный сигнал. Один полный оборот вектора (360°, или 2π) со­ответствует одному полному периоду. Половина оборота (180°, или π) со­ответствует половине периода, и так далее. Таким образом, ось времени, как показано на рисунке, может использоваться для нанесения значений угла, на который повернулся вектор. Максимум сигнала достигается при 90° (1/4 периода), а минимум - при 270° (3/4 периода).

Теперь рассмотрим два синусоидальных сигнала, представленных на рис. 4.19(а) векторами ОА и ОВ соответственно. Если оба сигнала имеют одинаковые частоты, то векторы ОА и ОВ будут вращаться с одинаковой угловой скоростью ω = 2πf . Это означает, что угол между этими векторами



Рис. 4.18.



Рис. 4.19. Разность фаз. Вектор ОА опережает вектор ОВ

(или вектор ОВ отстает от вектора ОА) на угол θ .

изменяться не будет. Говорят, что вектор ОА опережает вектор ОВ на угол θ , а вектор ОВ отстает от вектора ОА на угол в. На рис. 4.19(б) эти сигналы развернуты во времени.

Если оба этих синусоидальных сигнала сложить, то в результате получим другой синусоидальный сигнал, имеющий ту же частоту f , но другую амплитуду. Результирующий сигнал может быть представлен вектором ОТ, который, как показано на рис. 4.19(в), является векторной суммой векторов ОА и ОВ. Вектор ОТ опережает вектор ОВ на угол α и отстает от вектора ОА на угол γ. Дальше вы увидите, что векторное представление является весьма удобным приемом при анализе и расчете цепей переменного тока.

В этом видео рассказывается о катушке индуктивности:

Для рассмотрения параллельного соединения катушки и конденсатора представим их на схеме активными и реактивными проводимостями (рис. 14.11, а).

На схеме рис. 14.1.1, б те же катушки и конденсатор представлены активными и реактивными сопротивлениями. Первая схема имеет некоторое преимущество, так как в ней все элементы соединены параллельно, а в другой они соединены смешанно.

Считая известными параметры катушки G1, BL и конденсатора G2, BC, а также напряжение u = Umsinωt

При последовательном: индуктивность складывается. С емкостью 1/Cобщ=1/С1+1/C2+1/С3
При параллельном: емкости складываются, с индуктивностями, как с конденсаторами при последовательном соединении

Вариант 2. ёмкость при параллельном соединении складывается (напряжение пробоя остается тем же) , при последовательном высчитывается по формуле как параллельные сопротивления, напряжение просто складывается.
а индуктивность при последовательном складывается, а при параллельном как сопротивления параллельные высчитывается.

40.Метод комплексных амплитуд.

Метод комплексных амплитуд состоит в следующем:

1) исходная схема электрической цепи заменяется комплексной схемой замещения, в которой:

а) все пассивные элементы заменяются их комплексными сопротивлениями, как показано на рис. 4.27.

б) все токи и напряжения в схеме заменяются их комплексными амплитудами, т.е. х (t ) = Xm cos(w0t – jx ) ® Xm = Xm e–j jx.

Z L=j wL

Z C= 1/(j wC )

Z R=R

Рис. 4.27

2) Расчет электрической цепи сводится к составлению уравнений состояния цепи на основе законов Ома и Кирхгофа в комплексной форме и нахождению комплексных амплитуд токов или напряжений на интересующих нас участках цепи, т.е.Ym = Ym e–j jy.

3) Запись окончательного решения состоит в замене рассчитанных комплексных амплитуд на гармонические функции времени, т.е.

Ym =Ym e –j jy ® y (t ) = Ym cos(w0t – jy ).

Пример 1. Алгоритм метода рассмотрим на примере анализа цепи, схема которой приведена на рис. 4.29.

Рис. 4.29. RLC -цепь второго порядка

На вход цепи подается синусоидальное воздействие. Параметры воздействия и элементов цепи известны: Um =1 В, ω =1 с-1 , φ u =900 , R =1 Ом, L =1 Гн, C =1 Ф. Требуется определить токи и напряжения ветвей, построить векторную диаграмму.

1. Представим воздействие в комплексной форме:

2. Построим схему замещения цепи в частотной области, заменив элементы цепи комплексными двухполюсниками, как это показано на рис. 4.30.

Рис. 4.30. Схема замещения цепи в частотной области

3. Произведем расчет реакций (токов и напряжений) в комплексной области. При этом можно воспользоваться законами Кирхгофа и Ома в комплексной форме, а также известными методами расчета резистивных цепей:

51.41. Элементы R , L и С в цепях переменного тока. Импеданс.

Физическими элементами реальной электрической цепи являются резисторы, катушки индуктивности, конденсаторы, трансформаторы, транзисторы и другие компоненты электроники. При изучении электрических цепей реальные элементы заменят их математическими моделями, которые с нужной точностью воспроизводят свойства и параметры физических элементов.

Рис. 1.1. Условные обозначения резистивного (а), емкостного (б) и индуктивного (в) элементов.

К пассивным элементам относятся резистивные R, индуктивные L, и емкостные C элементы, условные обозначения которых показаны на рис. 1.1.

Резистивным элементом (рис. 1.1,а) называют такой элемент, который обладает только свойством рассеивания энергии. Математическая модель резистивного элементаR определяется законом Ома, который устанавливает зависимость напряжения u от тока i, протекающего через сопротивление R. Такую зависимость называют вольт-амперной характеристикой (ВАХ) резистивного элемента и записывают в следующем виде:

Если в (1.6) u = 1В, i = 1А, то R = 1Ом. Более крупными единицами измерения величины сопротивления являются килоом (1кОм = 103Ом) и мегоом (1мОм = 106Ом). Величина, обратная сопротивлению, называется проводимостью резистора. Она обозначается G и измеряется в сименсах (См). ВАХ для линейного и нелинейного резистивных элементов показаны на рис. 1.2.

Рис. 1.2. ВАХ линейного (а) и нелинейного (б) резистивных элементов.

Согласно уравнению (1.5) мощность, рассеиваемая резистивным элементом в виде тепла, равна:

Источником напряжения (Рис. 1.3,а и б) называют идеализированный двухполюсный элемент, напряжение на зажимах (полюсах) которого не зависит от протекающего через него тока. Часто источник напряжения называют генератором напряжения и в качестве характеристики используют напряжение или электродвижущую силу генератораuг или eг.

Электри?ческий импеда?нс (комплексное сопротивление , полное сопротивление ) - комплексное сопротивление двухполюсника для гармонического сигнала.

В отличие от резистора, электрическое сопротивление которого характеризует соотношение напряжения к току на нём, попытка применения термина электрическое сопротивление к реактивным элементам (катушка индуктивности и конденсатор) приводит к тому, что сопротивление идеальной катушки индуктивности стремится к нулю, а сопротивление идеального конденсатора - к бесконечности.

Сопротивление правильно описывает свойства катушки и конденсатора только на постоянном токе. В случае же переменного тока свойства реактивных элементов существенно иные: напряжение на катушке индуктивности и ток через конденсатор не равны нулю. Такое поведение сопротивлением уже не описывается, поскольку сопротивление предполагает постоянное, не зависящее от времени соотношение тока и напряжения, то есть отсутствие фазовых сдвигов тока и напряжения.

Было бы удобно иметь некоторую характеристику и для реактивных элементов, которая бы при любых условиях связывала ток и напряжение на них подобно сопротивлению. Такую характеристику можно ввести, если рассмотреть свойства реактивных элементов при гармонических воздействиях на них. В этом случае ток и напряжение оказываются связаны некоей стабильной константой (подобной в некотором смысле сопротивлению), которая и получила название электрический импеданс (или просто импеданс ). При рассмотрении импеданса используется комплексное представление гармонических сигналов, поскольку именно оно позволяет одновременно учитывать и амплитудные, и фазовые характеристики сигналов и систем.

42.Мощность, рассеиваемая элементами R , L и С .

Рассеиваемая (поглощаемая) мощность элемента электрической цепи – значение мощности рассеиваемой на элементе цепи, которую элемент может поглотить (выдержать) без изменения его номинальных параметров (выхода из строя). Рассеиваемая мощность резисторов обозначается в его названии (например: двух ваттный резистор - ОМЛТ-2, десяти ваттный проволочный резистор – ПЭВ-10). При расчёте принципиальных схем, значение необходимой рассеиваемой мощности элемента цепи рассчитывается по формулам:

Для надёжной работы, определённое по формулам значение рассеиваемой мощности элемента умножается на коэффициент 1,5 , учитывающий то, что должен быть обеспечен запас по мощности.

Так как напряжение u и ток i могут совпадать или не совпадать по направлению, то согласно (1.14) мощность p может быть как положительной, так и отрицательной.

При p > 0 емкостной элемент накапливает энергию, а при p < 0 – отдает. Энергия, запасенная в емкостном элементе к моменту t (1.15) всегда положительна.

43.Расчёт цепей переменного тока. Характер импеданса (емкостной и индуктивный).

// Первую половину вопросов вытащить из методички по первой лабе.

Любой ток изменяющийся по величине является переменным. Но на практике под переменным током понимают такой ток, закон изменения которого во времени есть синусоидальная функция.

Математическое выражение для синусоидального тока можно записать в виде:

где, i - мгновенное значение тока, показывающее величину тока в конкретный момент времени, Im - амплитудное (максимальное) значение тока, выражение в скобках есть фаза, которая определяет значение тока в момент времени t, f - частота переменного тока, это величина, обратная периоду изменения синусоидальной величины Т, ω - угловая частота, ω = 2πf = 2π / T, α - начальная фаза, показывает значение фазы в момент времени t = 0.

Индуктивное сопротивление () обусловлено возникновением ЭДС самоиндукции в элементе электрической цепи. Изменение тока и, как следствие, изменение его магнитного поля вызывает препятствующее изменению этого тока ЭДС самоиндукции. Величина индуктивного сопротивления зависит от индуктивности элемента и частоты протекающего тока:

Ёмкостное сопротивление (). Величина ёмкостного сопротивления зависит от ёмкости элемента и также частоты протекающего тока:

Здесь - циклическая частота, равная.

44.Четырёхполюсники. Передаточная характеристика и её измерение.

Четырёхпо?люсник - электрическая цепь, разновидность многополюсника, имеющая четыре точки подключения. Как правило, две точки являются входом, две другие - выходом.

При анализе электрических цепей очень часто бывает удобным выделить фрагмент цепи, имеющий две пары зажимов. Поскольку электрические (электронные) цепи очень часто связаны с передачей энергии или обработкой и преобразованием информации, одну пару зажимов обычно называют «входными», а вторую - «выходными». На входные зажимы подаётся исходный сигнал, с выходных снимается преобразованный.

Такими четырёхполюсниками являются, например, трансформаторы, усилители, фильтры, стабилизаторы напряжения, телефонные линии, линии электропередачи и т. д.

Передаточная характеристика, где Uвых, UВХ – соответственно напряжение на выходе и входе схемы. Характеристика снимается для одного входа (нагрузкой элемента являются аналогичные элементы).

На входах х2, х3 будет уровень напряжения U0ВХ, а на входе х1 – напряжение UВХ. Изменяя напряжение на входе х1 от Uвх  U0вх до Uвх  U1вх и измеряя напряжение на входе х1 и на выходах схемы у1 и у2, получим передаточную характеристику.

45.Четырёхполюсники. Переходная, импульсная и частотная характеристики.

Четырёхпо́люсник - электрическая цепь, разновидность многополюсника, имеющая четыре точки подключения . Как правило, две точки являются входом, две другие - выходом.

Симметричный четырёхполюсник - четырёхполюсник, у которого схема одинакова относительно его входных и выходных зажимов. Тогда для симметричного четырёхполюсника Z11 = Z22. Ещё: если при перемене местами источника и приемника энергии их токи не меняются, то такой четырёхполюсник называется симметричным.

Пассивный четырёхполюсник - это четырёхполюсник, который не содержит источников энергии, либо содержит скомпенсированные источники энергии.

Активный четырёхполюсник - это четырёхполюсник, который содержит нескомпенсированные источники энергии.

Обратимый четырёхполюсник - четырёхполюсник, у которого выполняется теорема обратимости, то есть передаточное сопротивление входных и выходных контуров не зависят от того, какая пара зажимов входная, а какая выходная: U1/I2=U2/I1

Частотные характеристики. Бывают АЧХ и ФЧХ. Поскольку при подаче на вход линейной системы синусоидального сигнала на выходе также появляется синусоидальный сигнал той же частоты, частотные характеристики связывают амплитуды и фазы этих сигналов. АЧХ – отношение амплитуды выходного сигнала к амплитуде входного сигнала в зависимости от частоты. ФЧХ – сдвиг фаз между входным и выходным сигналами в зависимости от частоты.

Интегрирующая RC-цепь:

- Комплексная частотная характеристика
- АЧХ
- ФЧХ

АЧХ и ФЧХ интегрирующей цепи:


Частотные характеристики показывают как преобразуется синусоидальный сигнал в данной системе. Следовательно, воспользовавшись разложением Фурье для входного сигнала можно получить спектр выходного сигнала. Для этого спектр амплитуд умножают на АЧХ почастотно, а спектр фаз складывают также почастотно.

Связь между частотными, переходными и импульсными характеристиками. Импульсная характеристика связана с переходной интегрирования, потому что импульс - это производная от ступеньки. Частотная характеристика связана c импульсной преобразованием Фурье, так как частотная характеристика строится в частотной области, а импульсная - во временной.

Связь между частотной, переходной и импульсной характеристиками:


46.АЧХ и ФЧХ четырёхполюсников.

//обратиться к методичке от первой лабы

47.Основные типы электрических фильтров.

Электрический фильтр - это устройство, предназначенное для выделения или подавления электрических сигналов заданных частот.


По характеру полосы пропускаемых частот фильтры делятся на шесть типов:

1) ФНЧ (фильтр нижних частот) - пропускает сигналы с частотой от 0 до f в (f в =ω в /2π).

2) ФВЧ (фильтр верхних частот) - пропускает сигналы с частотой от f н до ∞

3) ФПП (полосовой фильтр) - пропускает сигналы с частотой от f н до f в.

4) РФ (режекторный фильтр) - не пропускает сигналы заданной частоты или полосы частот

5) ГПФ (гребенчатый фильтр) - фильтр, имеющий несколько полос пропускания.

6) РГФ (режекторный гребенчатый фильтр) - фильтр, имеющий несколько полос подавления.

48.Последовательный колебательный контур, его основные свойства.

Колебательный контур - осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

последовательный колебательный контур, сопротивление которого на резонансной частоте стремится к нулю.

Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / Х Σ , где Х Σ - сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q . Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = Х L = Х C при ω =ω р . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C) . Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура - катушкой (энергия магнитного поля) W L = (LI 2)/2 и конденсатором (энергия электрического поля) W C =(CU 2)/2 . Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает "качество". Добротность колебательного контура - характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R .
Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи, соответственно. Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R , где R -сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I 2 R . Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.

Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники.

49.Параллельный колебательный контур, его основные свойства.

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя - можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности B L = 1/ωL , конденсатора В C = -ωC , а также суммарной проводимости В Σ , этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

50.RC -цепь и её характерное время.

RC-цепь - электрическая цепь, состоящая из конденсатора и резистора. Её можно рассматривать как делитель напряжения с одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Если соединить резистор и конденсатор, то получится пожалуй одна из самых полезных и универсальных цепей.

Резистор - его задача ограничивать ток. Это статичный элемент, чье сопротивление не меняется, про тепловые погрешности сейчас не говорим - они не слишком велики. Ток через резистор определяется законом ома - I=U/R , где U напряжение на выводах резистора, R - его сопротивление.

Конденсатор штука поинтересней. У него есть интересное свойство - когда он разряжен то ведет себя почти как короткое замыкание - ток через него течет без ограничений, устремляясь в бесконечность. А напряжение на нем стремится к нулю. Когда же он заряжен, то становится как обрыв и ток через него течь перестает, а напряжение на нем становится равным заряжающему источнику. Получается интересная зависимость - есть ток, нет напряжения, есть напряжение - нет тока.


«В этом случае скорость заряда конденсатора будет зависить от сопротивлений в цепи и емкости кондера, а сам заряд будет идти по экспоненциальному закону.»

и там же, в этой же статье:

«А у этого закона есть пара характерных величин:
Т - постоянная времени, это время при котором величина достигнет 63% от своего максимума. 63% тут взялись не случайно, тут прямая завязка на такую формулу VALUET=max–1/e*max.
3T - а при троекратной постоянной значение достигнет 95% своего максимума.

Постоянная времени для RC цепи Т=R*C.»

51.RL -цепь и её характерное время.

LR-цепь - электрическая цепь, состоящая из резистора и индуктивности. Её можно рассматривать как делитель напряжения, в котором одно из плеч представляет собой индуктивное сопротивление переменному току.

Рассмотрим цепь, состоящую из последовательно соединенных резистора R и катушки L, в электротехнике такая цепь часто называетсяпоследовательной RL-цепью .

В случае RC-цепи напряжение снимается с резистора, а в случае RL-цепи – с индуктивности.

Простейшие

.

В настоящее время большинство дифференцирующих цепей основаны на RC-цепях, поэтому будем рассматривать их, но все основные выкладки соответствуют также и RL-цепям.

52.Дифференцирующие и интегрирующие RLC -цепи и условия их работы.

Рассмотрим цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки индуктивности.

LR-цепь дифференцирующего типа является фильтром верхних частот. Фильтр верхних частот (ФВЧ ) - электронный или любой другой фильтр, пропускающий высокие частоты входного сигнала, при этом подавляя частоты сигнала ниже частоты среза. Степень подавления зависит от конкретного типа фильтра.

Не так давно, мы с вами рассматривали, как ведет себя конденсатор в цепи постоянного и переменного тока . А в этой статье рассмотрим, как ведет себя катушка индуктивности , если на нее подать постоянный и переменный ток. Хочу вам напомнить, что постоянный ток - это ток, который течет всегда в одном направлении, а переменный ток - это ток, который меняет свое направление с какой-то частотой.

Катушка индуктивности в цепи постоянного тока.

Итак, для этого опыта нам понадобится блок питания , который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Намотать на него лакированного медного провода и зачистить выводы:



Замеряем индуктивность нашей катушки с помощью LC метра :



132 микроГенри.

Теперь собираем все это вот по такой схеме:


где

L - катушка индуктивности

La - лампочка накаливания на напряжение 12 Вольт

Bat - блок питания, с выставленным напряжением 12 Вольт

Лампочка засветилась!



Как вы помните, конденсатор у нас не пропускал постоянный электрический ток:



Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого сделана катушка.

Катушка индуктивности в цепи переменного тока.

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф , генератор частоты , собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.

Собираем все это дело по такой схеме:



Получилось как то так:



Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал - желтым. Следовательно, красная синусоида - это частота, которую нам выдает генератор частоты, а желтая синусоида - это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Кто до сих пор не знает что такое осциллограф, можно прочитать про него . Что такое цифровой осциллограф, можно прочитать . Про автоматическое измерение параметров с помощью цифрового осцилла, читаем Кто уже читал и все знает, идем дальше.

Для начала подаем сигнал с частотой в 1 КилоГерц.



Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Красный кружок с цифрой "1" - это замеры "красного"канала. Как мы видим, F (частота) =1 КилоГерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой "2". F =1 КилоГерц, а Ма =1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 КилоГерц



Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 КилоГерц



Видели да? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз . Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз - это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Увеличиваем частоту до 200 КилоГерц



На частоте 200 КилоГерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 КилоГерц.



Амплитуда желтого сигнала упала уже до 720 миллиВольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 КилоГерц



Амплитуда уменьшилась до 480 миллиВольт.

Добавляем еще частоту до 1 МегаГерца



Амплитуда желтого канала стала 280 миллиВольт .

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 МегаГерца



Амплитуда "желтого" сигнала стала настолько маленькой, что мне пришлось ее даже увеличить на осцилле в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:



Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микроГенри.



Итак, прогоняем все по тем же значениям частоты



При частоте в 1 КилоГерц у нас значение почти не изменилось.

10 КилоГерц



Здесь тоже ничего не изменилось.

100 КилоГерц



Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонька сдвигаться.

200 КилоГерц



Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 КилоГерц



Сдвиг фаз стал больше и амплитуда просела еще больше

500 КилоГерц



Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 МегаГерц



Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. ;-)

2 МегаГерца, предел моего генератор частоты



Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

С помощью нехитрых умозаключений, физиками была выведена формула:

где

Х L - сопротивление катушки, Ом

П - постоянная и равна приблизительно 3,14

F - частота, Гц

L - индуктивность

В данном опыте мы с вами получили фильтр низких частот (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.