Краткие сведения о горючем, смазочных материалах и технических средствах. Топливо, смазочные материалы и технические жидкости

В автотракторных двигателях применяют жидкие и газообразные топлива, Топливо этих видов в зависимости от сырья, из которого его получают, может быть нефтяного и ненефтяного происхождения. Жидкие топлива (бензин и дизельное) получают из нефти путем ее прямой перегонки или крекинг-процессом.

Газообразные топлива как естественного происхождения, так и искусственные, полученные газификацией твердых топлив или другими способами, применяют в автотракторных двигателях в сжиженном и сжатом состоянии. К сжиженным газовым топливам относятся газы, способные при относительно низких давлениях (до 2 МПа) и нормальной температуре (20°С) переходить в жидкое состояние. Сжатые газы при нормальной температуре не переходят в жидкое состояние даже при высоком давлении (до 20 МПа), поэтому их используют в газообразном состоянии.

Расширенное применение газообразных топлив обусловлено их преимуществами:

  • меньшей стоимостью
  • способностью к лучшему смесеобразованию
  • полным сгоранием в цилиндрах
  • отсутствием разжижения моторного масла

Автомобильные бензины для карбюраторных двигателей должны удовлетворять следующим требованиям:

  • иметь высокие карбюрационные и антидетонационные свойства
  • давать минимальное количество нагара
  • не вызывать коррозии
  • обладать высокой стабильностью при хранении

Товарные сорта бензинов получают смешиванием дистиллятов бензина прямой перегонки и термического крекинга, к которым добавляют с целью повышения их антидетонационной стойкости моторный бензол, алкилбензол, бензин каталитического крекинга, технический изооктан и др. С точки зрения антидетонационной стойкости наиболее желательны в бензине ароматические углеводороды, однако при сгорании они образуют канцерогенные вещества, в частности, 3,4 бензпирен. Поэтому нормами Европейского Союза содержание ароматических углеводородов в бензине не должно превышать 10%.

Ранее по ГОСТ 208467 бензин выпускался следующих марок: А-76, АИ-93 и АИ-98. Для первой из указанных марок октановое число определялось моторным методом, а для двух последующих — исследовательским методом. Сейчас для неэтилированных бензинов в зависимости от октанового числа, определенного исследовательским методом, установлены следующие марки бензинов: «Нормаль-80», «Регуляр-92», «Премиум-95» и «Супер-98». Октановое число этих бензинов, определенное моторным методом, равно соответственно 76 — 83 — 85 — 88. Стандарт разрешает применение для этих бензинов марганцевых антидетонаторов.

Дизельные двигатели имеют меньший удельный эффективный расход топлива — 170…180 г/элсч по сравнению с карбюраторными — 220…250 г/элсч ввиду большей степени сжатия. В конце сжатия, когда давление составляет 30 — 35 атм и температура 500…550°С, за 15…25° до ВМТ начинается и через 6…10°после ВМТ заканчивается впрыск топлива, которое сгорает, обеспечивая работу двигателя.

Дизельное топливо должно удовлетворять следующим эксплуатационным требованиям:

  • обладать хорошими низкотемпературными свойствами, не содержать механических примесей и воды
  • обеспечивать хорошее смесеобразование и испарение, для чего иметь оптимальную вязкость и фракционный состав
  • обладать хорошей воспламеняемостью, т.е. обеспечивать легкий запуск, мягкую работу двигателя и полное бездымное сгорание, что зависит от вязкости, химического и фракционного составов
  • не вызывать нагаро- и лакообразования
  • не содержать коррозийных продуктов

Дизельные топлива получают смешением в основном трех дистиллятов прямой перегонки: керосинового, газойлевого и частично солярового, с добавлением элементов каталитического крекинга. В зависимости от требующегося сорта дизельного топлива изменяют пропорцию при смешении компонентов. Например, соляровый дистиллят вводится лишь в летнее дизельное топливо, а арктическое дизельное топливо почти целиком состоит из керосинового дистиллята.

Автотракторное дизельное топливо вырабатывается трех сортов:

  • Л (летнее), применяемое при температуре окружающего воздуха 273 К (0 оС) и выше
  • З (зимнее) — для эксплуатации при температуре 253 К (-20 °С) и выше
  • А (арктическое), используемое при температуре 223 К (-50 °С) и выше

Смазочные материалы для автомобилей

Для обеспечения надежного смазывания и длительной работы механизмов в масла вводят присадки, которые улучшают эксплуатационные качественные показатели масел. Присадки представляют собой металлоорганические и другие сложные химические соединения. Их классифицируют в зависимости от выполняемых ими функций в масле.

Моторные масла

Классификация моторных масел в соответствии с ГОСТ 17479-72 предусматривает выпуск их с вязкостью от 6 до 20 сСт при 100°С с интервалом через 2сСт. По эксплутационным свойствам масла делят на шесть групп (А, Б, В, Г, Д, Е), отличающиеся количеством и эффективностью введенных присадок. Поэтому в марке указывается значение кинематической вязкости при 100°С и буква, которая позволяет выбрать масло для двигателей различной степени теплонапряженности.

Масла группы А не содержат присадок и в настоящее время не выпускаются. В масла группы Б вводили до 5% присадок и использовали их в малофорсированных карбюраторных двигателях старых марок.

Масла группы В предназначены для работы в среднефорсированных двигателях и содержат до 8 % присадок, а масла группы Г для форсированных двигателях содержат до 14 % присадок.

Масла групп Б, В, Г делятся на 2 подгруппы:

  • 1 — для карбюраторных двигателей
  • 2 — для дизелей

Эти индексы указываются в марке. Для работы теплонапряженных двигателей с наддувом предназначены масла группы Д.

Масла группы Е предназначены для малооборотных стационарных дизелей и в сельском хозяйстве не применяются.

Буква М в маркировке масла указывает на то, что масло моторное. Например, масло М-4з/8В2, моторное, класс вязкости 4, имеет вязкость 8 сСт при 100°С, содержит загущающую присадку и предназначено для среднефор- сированных двигателей.

Зимой применяются масла с вязкостью 8 сСт, а летом — 10 сСт. Для среднефорсированных двигателей грузовых автомобилей применяются масла М-8В1 и М-10Вь Для высокофорсированных двигателей автомобилей применяются масла М-8Г1 и М-10Г1.

Масло М-8В2 и М-10В2 применяется для среднефорсированных двигателей тракторов устаревших марок. Для двигателей тракторов К-700, К-701, Т-150К и ДТ-175С применяются только масла группы Г — М-8Г2 и М-10Г2 .

Для автомобилей КАМАЗ предназначено масло М-8Г2к и М-10Г2к, имеющие улучшенные моюще-диспергирующие, вязкостно-температурные свойства и более низкую зольность по сравнению с другими маслами группы Г. Это масло рекомендуется к использованию также для тракторов К-700 и К-701.

Для обеспечения эксплуатации высокофорсированных дизелей с наддувом выпускается в ограниченном количестве масло М-10Дм, имеющее улучшенные моющие и антиокислительные свойства.

Масла МС-14, МС-20, и МК-22 используются в поршневых авиационных двигателях, а цифра в их маркировке указывает вязкость в сСт при 100°С. Эти масла могут использоваться в высокофорсированных тракторных двигателях.

Принято следующее обозначение масел для двигателей различного назначения. Оно состоит из групп знаков:

  • первая буква М (моторное)
  • вторая — цифры, характеризующие класс кинематической вязкости
  • третья — прописные буквы (А, Б, В, Г, Д, Е), означающие принадлежность к группе масел по эксплуатационным свойствам

Масла различных групп различаются эффективностью и содержанием присадок.

В марках масел, предназначенных для карбюраторных двигателей, указывают индекс 1, а для дизелей — индекс 2. Универсальные моторные масла, предназначенные для использования как в дизелях, так и в карбюраторных двигателях одного уровня форсирования (обозначаемые одинаковыми буквами), индекса в обозначении не имеют. Масла, принадлежащие к разным группам, имеют двойное обозначение, в котором первая буква характеризует качество масла при применении в дизелях, а вторая — в карбюраторных двигателях.

Примеры обозначения:
М — 8 — Вь где М — моторное масло; 8 — вязкость при 100 оС, мм2/с; В1 — для среднефорсированных карбюраторных двигателей;
М - 61/10 - Гь где 6 — класс вязкости, для которого вязкость при 255 К (-18 оС) находится до 10400 мм2/с; з (в индексе) — наличие загущающей (вязкостной) присадки, вследствие чего масло может быть использовано в качестве как зимнего, так и всесезонного; 10 — вязкость при 373 К (100 °С); T -для высокофорсированных карбюраторных двигателей.

Трансмиссионные масла

Трансмиссионные масла используют для смазывания агрегатов и механизмов трансмиссий тракторов, автомобилей и других машин.

Трансмиссионные масла по вязкости делят на четыре класса (9, 12, 18 и 34), а по эксплуатационным свойствам — на пять групп (1…5) и маркируют следующим образом:

Пример обозначения : ТМ-5-123(рк), где ТМ — трансмиссионное масло; 5 — наличие противозадирной высокоэффективной присадки многофункционального действия; 12 — класс вязкости (1100… 1399 мм2/с); з — наличие загущающей присадки; рк — обладает рабочеконсервационными свойствами.

Пластичные смазки представляют собой мазеобразные продукты, состоящие из минерального или синтетического масла (основы), загустителя, наполнителя, стабилизатора и присадок.

Технические жидкости

В качестве охлаждающих жидкостей в автотракторных двигателях применяют воду и низкозамерзающие жидкости (антифризы).

Антифризы представляют собой смесь этиленгликоля (двухатомного спирта) с водой и антикоррозионной присадкой. Промышленность выпускает антифризы марок 40 и 65. Эти антифризы предназначены для эксплуатации двигателей в холодное время года при температуре до 233…208 К (- 40…- 65 оС).

Низкозамерзающая жидкость «Тосол» предназначена для использования всесезонно в двигателях легковых (ВАЗ, ГАЗ и др.) и грузовых (ЗИЛ-4331, КамАЗ) автомобилей, тракторов К-701. Выпускают три марки этой жидкости: АМ, А-40 и А-65. «Тосол» марки АМ представляет собой концентрат, при разбавлении которого на 50 % дистиллированной водой получают антифриз с температурой застывания 238 К (- 35 °С). При соответствующем разбавлении «Тосола» марки АМ дистиллированной водой получают марку А-40 с температурой замерзания 233 К (- 40 °С) или А-65 с температурой замерзания 208 К (- 65 °С).

Тормозные жидкости предназначены для использования в гидравлическом приводе тормозов и сцеплений легковых и грузовых автомобилей. Выпускают несколько марок тормозных жидкостей, например: БСК, ГТЖ-22М, ГТЖА-2 («Нева»), «Томь» и «Роса».

Государственный проектно-изыскательский
и научно-исследовательский институт
гражданской авиации "Аэропроект"

УТВЕРЖДЕНО
Заместителем Министра
гражданской авиации
1 ноября 1991г.

НАСТАВЛЕНИЕ
ПО СЛУЖБЕ ГОРЮЧЕ-СМАЗОЧНЫХ МАТЕРИАЛОВ НА ВОЗДУШНОМ
ТРАНСПОРТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ
(НГСМ-РФ-94)

"Наставление по службе горюче-смазочных материалов на воздушном транспорте Российской
Федерации (НГСМ-РФ) разработано Государственным проектно-изыскательским и научно-исследовательским институтом гражданской авиации "Аэропроект" и предназначено для всех должностных лиц воздушного транспорта (ВТ), а также учреждений и предприятий народного хозяйства арендующих воздушные суда (ВС) и обеспечивающих поставку для них горюче-смазочных материалов (ГСМ).
Наставление по службе ГСМ определяет основные положения и общие правила организации работы службы ГСМ по обеспечению предприятий ГСМ, заправке ВС, эксплуатации сооружений и оборудования, контроля качества ГСМ и спецжидкостей, охране труда и пожарной безопасности , подготовке кадров, повышению их квалификации.
С вводом в действие настоящего Наставления утрачивает силу "Наставление по службе горюче-смазочных материалов в ГА СССР" (НГСМ ГА-86), введенное приказом - Министерства гражданской авиации от 12.03.85г. №46.

Глава 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Термины и определения.

Аэропорт - предприятие, осуществляющее регулярные прием и отправку пассажиров, багажа, грузов и почты, организацию и обслуживание полетов воздушных судов (ВС) и имеющее для этих целей аэродром, аэровокзал и другие наземные сооружения, а также необходимое оборудование.
Аэродром ПАНХ - взлетно-посадочные полосы (площадки),. временные аэродромы, вертодромы, специально подготовленные и оборудованные для взлета и посадки ВС и предназначенные для выполнения, как правило, сезонных работ.
Служба горюче-смазочных материалов - структурное подразделение авиапредприятия, которое обеспечивает, снабжение ГСМ, прием, хранение, подготовку и выдачу их на заправку ВС и наземной техники с соблюдением правил и требований охраны труда, пожарной безопасности и охраны окружающей среды .
Склад горюче-смазочных материалов - комплекс зданий, сооружений, установок и оборудования для приема, хранения и выдачи ГСМ на заправку ВС и спецавтотранспорта
Горюче-смазочные материалы (ГСМ) - общее наименование топлив, масел, смазок и спецжидкостей всех марок, применяемых при эксплуатации авиационной и наземной техники.
АвиаГСМ - общее наименование топлив, масел, смазок и спецжидкостей всех марок, применяемых при эксплуатации авиационной техники.
Заправка - комплекс работ по заполнению ГСМ баков ВС и наземной техники.
Качество горюче-смазочных материалов - совокупность свойств ГСМ, определяющая способность этих материалов удовлетворять установленным требованиям в соответствии с их прямым назначением.
Контроль качества горюче-смазочных материалов - определение физико-химическими анализами значения показателей качества ГСМ для установления соответствия полученных значений требованиям ГОСТ или ТУ на данный продукт.
Система централизованной заправки самолетов (Ц3C) топливом - комплекс, сооружений и технологического оборудования для подачи топлива из резервуаров в баки ВС с помощью стационарных насосов по технологическим трубопроводам и через заправочные агрегаты.
Безопасность труда - состояние условий труда, при котором исключено воздействие на работающих опасных и вредных производственных факторов.
Техника безопасности - система, организационных мероприятий и технических средств, предотвращающих воздействие на работающих опасных производственных факторов.
Пожарная безопасность - состояние объекта, при котором с установленной вероятностью исключается возможность возникновения и развития пожара и воздействие на людей опасных факторов пожара, а также обеспечивается защита материальных ценностей.
Производственная санитария - система организационных мероприятий и технических средств, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов.
Охрана тpyдa - система законодательных актов, социально-экономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда.

1.2. Принятые сокращения.

АДП - аэродромный диспетчерский пункт.
А/О ФАГС - акционерное общество "Фирма АвиаГСМ сервис".
ATЗ - автотопливозаправщик.
БПРМЛ - базовая поверочно-ремонтная метрологическая лаборатория.
ВЛП - весенне-летний период.
ВС - воздушное судно.
ЗА - заправочный агрегат системы ЦЗС.
ИКТ - индикатор качества, топлива.
КПП - контрольно-пропускной пункт.
KР - капитальный ремонт .
МЗ - маслозаправщик.
МКК - местная квалификационная комиссия.
НСИ - нестандартизированные средства измерения.
НТД - нормативно-техническая документация.
ОНП - отработанные нефтепродукты.
ОЗП - осенне-зимний период.
ПАНХ - применение авиации в народном хозяйстве.
ПВК-Ж - противоводокристаллизационная жидкость.
ПДСП - производственно-диспетчерская служба предприятия.
РНП - концерн "Роснефтепродукт".
СИ - средства измерения.
СНО - средства наземного обслуживания.
СР - средний ремонт.
ССТ - служба спецтранспорта аэропорта.
ТО - техническое обслуживание.

Инженер, техник по ГСМ высшей квалификации (младший инженер)

не менее года

Высшее, среднетехническое (не по профилю работы)

Инженер, техник

не менее года

1.5.2.12. После принятия на работу в лабораторию ГСМ авиапредприятия на должность инженера-руководителя лаборатории сотрудник должен пройти обучение (стажировку):
- для лаборатории ГСМ и класса в базовой или класса лаборатории ГСМ своего объединения ВТ;
- для лаборатории ГСМ класса в базовой лаборатории ГСМ своего объединения ВТ;
- для базовой лаборатории ГСМ в базовой лаборатории ГСМ любого объединения ВТ, имеющей схожие условия работы.
По результатам обучения комиссия авиапредприятия, в котором проводится стажировка, оценивает уровень подготовленности сотрудника и возможность его работы руководителем лаборатории ГСМ и составляется акт по форме приведенной в приложении 5.
1.5.2.13. После работы сотрудника на рабочем месте в своем авиапредприятии под наблюдением руководителя службы ГСМ в течение испытательного срока при положительных результатах по представлению руководителя службы ГСМ приказом руководителя предприятия оформляется допуск его к самостоятельной работе.
1.5.2.14. Кандидат на должность техника-лаборанта в части квалификационных требований должен иметь следующий опыт по части контроля качества.

Техник-лаборант

Уровень образования

Квалификация

Продолжительность стажировки

Минимальная продолжительность испытательного срока

Высшее, среднее специальное (по профилю работы)

Инженер, младший инженер, техник

Среднее-техническое (не по профилю работы) среднee образование

Инженер, техник без квалификации

1.5.2.15. После принятия на работу в лабораторию ГСМ авиапредприятия на должность техника-лаборанта сотрудник должен пройти обучение в целях приобретения необходимых теоретических и практических навыков. Вне зависимости от имеющего уровня образования и специализации сотрудника его обучение охватывает следующие этапы:
- обучение на рабочем месте под руководством руководителя лаборатории или выделенного для этого опытного техника-лаборанта (не более 2-3 недель);
- стажировка в вышестоящей лаборатории ГСМ, при положительных результатах первого этапа. По результатам обучения комиссия авиапредприятия, которое проводит стажировку, оценивает уровень подготовленности сотрудника и возможность его работы техником-лаборантом и составляется акт по форме приложения 5;
- работа сотрудника на рабочем месте под наблюдением выделенного работника службы ГСМ в течение испытательного срока.
Для оказания методической помощи при организации обучения и повышения профессиональной подготовки персонала лаборатории ГСМ в приложении 6 приведена типовая программа подготовки техников-лаборантов.
1.5.2.16. При положительных результатах обучения техников-лаборантов, по представлению руководителя службы комиссией производится проверка знаний и оформляется протокол.
1.5.2.17. Должности и фамилии техников-лаборантов, допущенных к самостоятельному выполнению анализов и имеющих право подписывать паспорта качества на авиаГСМ, объявляются приказом руководителя авиапредприятия.
1.5.2.18. Продление допуска техника-лаборанта к самостоятельному проведению анализов авиаГСМ производится после повторной стажировки, которая проводится не реже 1 раза в 2 года.
Продление допуска руководителя лаборатории, класса к самостоятельному проведению анализов авиаГСМ производится посла повторной стажировки 1 раз в 3-5 лет на специальных курсах, сборах, или при необходимости в базовой лаборатории ГСМ.
Продление допуска руководителям базовых лабораторий ГСМ производится каждые два года после прохождения ими обучения на специальных курсах или сборах.
1.5.2.19. В процессе работы в зависимости от уровня профессиональной подготовки, квалификации и стажа работы техникам-лаборантам может быть присвоена вторая или первая категория.
Присвоение категории производится МКК авиапредприятия по представлению руководителя службы ГСМ.
МКК проверяет знания материалов у техников-лаборантов, учитывая при этом результаты обучения сотрудника на специальных курсах, сборах, индивидуальной стажировки. При оценке уровня профессиональной подготовки обязательно учитывать результаты анализов выполняемых сотрудником при проведении сверки воспроизводимости контрольных проб авиаГСМ.

Аттестация и допуск к работе авиатехников по ГСМ

1.5.2.20. Для работы в должности авиатехника по ГСМ необходимо знать:
- требования основных нормативных документов; задачи, организацию работы службы ГСМ; организацию подготовки, порядок применения и контроля качества ГСМ; правила приема ГСМ, учет, порядок ведения документации; порядок организации и проведения заправки ВС; правила эксплуатации, технического обслуживания и ремонта технологического оборудования и сооружений объектов ГСМ; правила охраны труда и пожарной безопасности, должностную инструкцию.
1.5.2.21. Авиационным техникам по ГСМ в зависимости от полученной в учебном заведении квалификации, уровня специальной подготовки сложности выполняемых работ и стажа paботы присваиваются 3-й, 4-й и 5-й разряды.
Основные квалификационные требования к авиатехникам по ГСМ приведены в приложении 3.
1.5.2.22. Допуск к работе выпускников ЕАТК, прошедших практику на данном предприятии, производится приказом руководителя авиапредприятия, по представлению руководителя службы ГСМ.
1.5.2.23. Допуск к работе в качестве авиатехника по ГСМ выпускников ЕАТК, не проходивших практику на данном предприятии производится после стажировки на службе ГСМ не менее 1 месяца, и проверки знаний МКК. На основании представления руководителя службы и акта МКК (приложение 7) издается приказ руководителя авиапредприятия о допуске к работе с присвоением разряда, соответствующего показанным знаниям и навыкам в работе и сложности выполняемых работ.
1.5.2.24. К работе в должности авиатехника службы ГСМ допускаются лица, имеющие среднее образование или среднее специальное образование не по профилю ГА, после прохождения первоначального обучения и стажировки сроком не менее 2-х месяцев на службе ГСМ, проверки их знаний МККК, по представлению руководителя службы и приказа: руководителя предприятия о допуске к работе.
1.5.2.25. Квалификация "Авиатехник по ГСМ разряда присваивается:
- лицам, которые окончили ступень ЕATK или училище ГА по профилю ГСМ;
- лицам, имеющим среднее и среднее специальное образование не по профилю ГСМ после обучения и стажировки на службе ГСМ.
1.5.2.26. Квалификация "Авиатехник по ГСМ IV разряда присваивается лицам, окончившим I ступень ЕATK по профилю ГСМ или другие средние специальные учебные заведения, проработавшим не менее 2-х лет авиатехником разряда, имеющим положительную аттестацию.
1.5.2.27. Квалификация "Авиатехник по ГСМ V разряда" присваивается лицам, окончившим ступень ЕАТК по профилю ГСМ, а также лицам, окончившим ступень ЕАТК и другие средние учебные заведения, проработавшим в службе ГСМ не менее 2-х лет техником V разряда, имеющим положительную аттестацию.
1.5.2.28. Руководителям авиапредприятий предоставляется право досрочно повышать разряд авиатехникам службы ГСМ высококачественно выполняющим производственные задания.
1.5.2.29. В случае невыполнения должностных обязанностей возможно снижение разряда специалистов на одну cтупень.
1.5.2.30. Повышение или понижение разряда (категории) специалистов осуществляется по представлению руководителя службы ГСМ при наличии акта МКК по проверке знаний и оформляется приказом руководителя авиапредприятия.

17 февраля отмечают свой профессиональный праздник представители Службы горючего Вооружённых сил Российской Федерации. Официально эта служба является составной частью Тыла ВС России, однако в существует немало примеров того, когда военнослужащие Службы горючего выполняли поставленные перед ними задачи фактически во фронтовых условиях. Роль Службы горючего и в современной армии сложно переоценить.


Точкой отсчёта в истории Службы горючего (СГ ВС) стал 1936 год. 79 лет назад по приказу тогдашнего главы Народного комиссариата обороны Климента Ворошилова создаётся Управление по снабжению горючим РККА (впоследствии Служба горючего Вооружённых сил СССР). История сохранила имя первого руководителя СГ ВС. Этим человеком стал Николай Николаевич Мовчин (1896-1938). Ещё до официального создания Службы горючего Николай Мовчин стал одним из инициаторов формирования прообраза структуры. Речь идёт об Управлении снабжения горючим Рабоче-крестьянской Красной Армии.
Николай Мовчин – это военный специалист, известный ещё и своими работами по истории Красной Армии, а также созданием мобилизационной стратегии. В 1935 году он получил звание полковника, которое, к сожалению, стало последним в его военной карьере. Дело в том, что примерно через 1,5 года после его назначения на пост главы Управления по снабжению горючим РККА полковник Мовчин был арестован и впоследствии расстрелян по приговору суда (так называемое «дело Тухачевского»). Реабилитировали Николая Николаевича посмертно - в августе 1956 года.

Пожалуй, наибольший вклад в дело развития СГ в советское время внёс человек, которого по праву называют патриархом Службы горючего. Это Василий Васильевич Никитин, который стоял у руля СГ ВС СССР около трёх десятилетий. Именно при генерале Никитине Служба горючего прошла, как сейчас модно говорить, через основные этапы структурного реформирования. Принял Василий Васильевич СГ в состоянии, которое можно было охарактеризовать, как в своё время написала газета «Красная Звезда», «получай – выдавай». За время же руководящей работы Василия Никитина СГ ВС СССР существенно расширилась, приобретя дополнительный функционал. Служба превратилась в полномасштабный сегмент боевого обеспечения, так как растущая численность и мощь армии ставили перед службами тыла новые и новые задачи, решения которых были отнюдь не простыми.

Во время Великой Отечественной войны Василий Никитин входил в состав оперативной группы Управления службы горючего. Спустя некоторое время он возглавил отдел Службы, и на его плечи легли обязанности по своевременному обеспечению горючим армий и дивизий. Военнослужащие, входившие в подразделения Службы горючего, нередко совершали настоящие подвиги, транспортируя топливо для военной техники прямо на передовую.

По сути, солдаты Службы горючего во время войны – это герои, которые оставались в тени славы лётчиков, танкистов, десантников, моряков, однако это никак не умаляет их вклада в общую героическую победу, добытую титаническим трудом и беспримерным мужеством. Понимали роль бойцов службы горючего и на фронте. Своевременная доставка топлива часто решала исход того или иного локального противостояния, которые в свою очередь собирались в общую картину разгрома гитлеровской армии.

Служба горючего при Василии Никитине превратилась ещё и в сегмент организации научной работы по совершенствованию характеристик топлива. В первую очередь речь идёт об изменении формулы реактивного топлива. В такой научной работе самое непосредственное участие принял сам генерал Никитин. Василий Никитин стал одним из разработчиков системы транспортирования горючего для военных целей с помощью трубопроводов. Именно Никитин в своё время предложил решить проблемы, связанные с доставкой топлива советским войскам в Афганистан, с помощью монтажа трубопровода. Совместными усилиями военнослужащих Службы горючего и Трубопроводных войск трубопровод в Афганистане начал функционировать, обеспечив поставки топлива для войск. Общая протяжённость двух направлений трубопровода в Афганистане составила более 1200 км. Через этот инфраструктурный объект было перекачано 5,4 млн. тонн горючего – около 80% от всего объёма поставок.

В том числе и за эти заслуги Василий Никитин был объявлен Лауреатом Государственной премии, став и для новых поколений военнослужащих настоящим образцом служению делу, с которым связал свою судьбу.

Сегодня Служба горючего решает задачи по хранению, транспортировке топлива по суше, морю и воздуху. Специалисты СГ ВС РФ выполняют заправочные работы, обслуживая сотни складов, автоматизированных пунктов выдачи топлива, заправочных пунктов и баз различного подчинения.

Если в 2010 году годовой оборот горючего в ВС РФ составлял около 8 млн. тонн, то теперь эта цифра выросла почти на 50%. Это говорит о повышении интенсивности деятельности ВС РФ, что в свою очередь даёт повод говорить и о повышении обороноспособности.

«Военное обозрение» поздравляет всех военнослужащих и ветеранов Службы горючего ВС (всех «горючников») с профессиональным праздником!

Для рационального использования ТСМ большое значение имеет их качество. При низком качестве ТСМ неизбежно увеличивается их расход, и ухудшаются показатели работы автомобиля.

Большое значение при экономии ТСМ имеет состояние трансмиссии и аэродинамические качества и масса автомобиля. Кроме того, наличие бортовых компьютеров, большое число передач, использование впрыска топлива в бензиновых двигателях значительно уменьшают расход ТСМ.

Расход ТСМ определяют следующие факторы:

  • организация транспортного процесса;
  • использование соответствующих ТСМ с учетом конструктивных особенностей автомобиля и условий его эксплуатации;
  • техническое состояние и регулировка узлов и механизмов автомобиля;
  • квалификация водителя;
  • условия транспортировки и хранения.

Организация транспортного процесса

От правильной организации перевозок зависит эффективность использования автомобилей. Степень использования грузоподъемности автомобиля определяется коэффициентом у - отношение массы перевозимого груза к грузоподъемности автомобиля. С увеличением у уменьшается расход топлива на единицу транспортной работы: увеличение у на 1 % снижает удельный расход топлива на 1,6 %. При у = 1 расход топлива будет минимальным.

Расход топлива на единицу транспортной работы можно уменьшить, увеличив коэффициент использования пробега р:

где 5 Г - пробег автомобиля с грузом; 5 - общий пробег автомобиля.

Увеличение коэффициента р на 1 % снижает удельный расход топлива на 1,3%. При использовании прицепов удельный расход топлива снижается на 25-30 %.

Использование ТСМ в соответствии с конструктивными

особенностями автомобиля и условиями его эксплуатации

Использование ТСМ без учета конструктивных особенностей двигателя неизбежно ведет к их перерасходу. Это, в первую очередь, относится к таким показателям качества топлива, как октановое число и фракционный состав для бензинов, цетановое число и фракционный состав для дизельных топлив. Так, работа на бензине с тяжелым фракционным составом может увеличить расход топлива до 70 % и повысить изнашивание двигателя на 30-40 %.

Применение несоответствующих сортов масел приводит к перерасходу не только масла, но и топлива: моторное масло с высокой вязкостью приводит к перерасходу топлива, с низкой вязкостью - к перерасходу самого масла.

Пластичная смазка с недостаточной температурой каплепа-дения будет вытекать из узлов трения.

Использование топлива и масла, не соответствующих климатическим условиям эксплуатации автомобиля также приводит к перерасходу ТСМ. Например, работа грузового автомобиля зимой на летних сортах ТСМ. Расход бензина при движении за городом по дороге с твердым покрытием увеличивается на 3-6 %, при движении в городских условиях - на 8-12 %.

Техническое состояние и качество регулирования узлов

и механизмов автомобиля

Изнашивание деталей увеличивает расход топлива в меньшей степени, чем некачественная регулировка. Так, изнашивание цилиндропоршневой группы до состояния, при котором из маслоналивной горловины начинают активно выходить отработавшие газы, приводит к росту расхода топлива на 10-12 %, а нарушение регулировок - на 20-25 %. Больше всего увеличивают расход топлива неправильное регулирование тормозных механизмов и ступиц колес, карбюратора, неправильное схождение колес, неисправности системы зажигания.

Увеличение скорости прорыва газа в картерное пространство с 15-25 л/мин (новый двигатель) до 60-100 л/мин (изношенный двигатель) увеличивает расход масла в 2-2,5 раза. В табл. 4.4 приведены неисправности некоторых деталей и узлов, влияющих на расход ТСМ.

Таблица 4.4. Неисправности, влияющие на расход ТСМ

Окончание табл. 4.4

Неисправность

Увеличение расхода ТСМ, %

Засорен воздушный фильтр или впускной трубопровод

Засорена система вентиляции картера двигателя

Не работает одна свеча зажигания в восьмицилиндровом двигателе

То же в шестицилиндровом двигателе

Неисправна одна форсунка

Зажигание установлено на 5° позднее наивыгоднейшего

Неправильно установлен зазор между контактами прерывателя

Уменьшен в 2 раза зазор между электродами свечей зажигания

Повышение уровня топлива в поплавковой камере на 4 мм

Неисправность центробежного автомата опережения зажигания

Засорение воздушных жиклеров главной дозирующей системы карбюратора с уменьшением пропускной способности на 7 %

Квалификация водителя

Высокая квалификация водителя автомобиля заключается в правильной оценке дорожных условий; максимальном использовании экономичных режимов работы; в использовании движения накатом; в своевременном переключении передач; в предпочтении езды на высшей передаче.

В зависимости от техники вождения расход топлива может изменяться на 20-25 %. Частое торможение увеличивает расход топлива, так как каждый раз приходится форсировать двигатель для очередного разгона, поэтому предпочтителен режим установившегося движения. Важно поддерживать нормальный тепловой режим двигателя, так как и перегрев, и переохлаждение двигателя приводят к перерасходу топлива.

Высокие скорости движения, безусловно, вызывают повышенный расход топлива, так как при этом приходится преодолевать сопротивление воздуха, которое возрастает пропорционально скорости движения. При скорости движения грузового автомобиля 70 км/ч на преодоление сопротивления воздуха затрачивается сила тяги на ведущих колесах в десять раз больше, чем при скорости движения 30 км/ч, а чтобы увеличить силу тяги, надо затратить дополнительное топливо.

Пустой багажник на крыше легкового автомобиля увеличивает расход топлива на 3-4 %. Еще больше расход топлива увеличивается при езде с открытыми окнами.

Условия транспортировки и хранения ТСМ

Топливо легко испаряется и обладает большой текучестью. Летом, например, через открытую пробку бочки за 1 ч может испариться до 1 кг бензина, а через открытую горловину резервуара за сутки может испариться более 100 кг топлива.

Бензин проникает через очень мелкие неплотности, через которые вода и керосин не проходят. Причем этого можно не увидеть, так как бензин тут же испаряется. Через так называемый потеющий шов длиной в 1 м в сутки теряется до 2 л бензина.

Подтекание ТСМ в виде капель со скоростью одна капля в секунду за сутки составит 4,5 л. При испарении теряются наиболее ценные фракции нефти.

При хранении и перевозке ТСМ тара должна быть чистой. Не допускается применять емкости, ранее использованные для хранения низшего сорта нефтепродуктов, без промывки.

При наполнении цистерны или резервуара сливной шланг должен быть опущен ниже поверхности уровня топлива для уменьшения контакта топлива с воздухом и испарения. При хранении бензина в бочках не следует их заполнять под пробку, иначе бензин при повышении температуры будет просачиваться по резьбе.

Бензин хранится при соблюдении всех правил до 5 лет, дизельное топливо - до 6 лет, масла всех видов - до 5 лет, пластичные смазки - от 1,5 до 3 лет.

Потери топлива в резервуарах, заполненных наполовину, в 5-6 раз больше, чем в полных, при этом в полузаполненных резервуарах интенсивнее идет смолообразование. Незаглубленные резервуары окрашиваются в светлые тона для уменьшения поглощения ими солнечной энергии. Смолообразование с увеличением температуры на 10 °С увеличивается в 2,4-2,8 раза, поэтому резервуары необходимо заглублять под землю.

При сливе и заливе резервуара на каждую тонну бензина теряется 5-7 кг.

Для обеспечения чистоты топлива необходимо систематически удалять отстой из резервуара и раз в год его чистить.

Использование для ТСМ ведер, леек, ручных солидолонагне-тателей увеличивает потери в 12-20 раз.

Потери нефтепродуктов нормируются.

Источник: Владимир Михайлович Янзин, канд. тех. наук, доцент кафедры «Эксплуатация машинно-тракторного парка» ФГБОУ ВПО «Самарская государственная сельскохозяйственная академия»

Длительная безаварийная работа любой машины зависит не только от строгого соблюдения установленных правил и норм эксплуатации, но и от использования только определенных сортов топливо-смазочных материалов (ТСМ) соответствующего качества.

Качество ТСМ влияет на такие важнейшие показатели двигателей внутреннего сгорания, как экономичность, долговечность, токсичность отработавших газов, металлоемкость и др. Например, путем использования высокоэффективных ТСМ ресурс двигателя можно увеличить в 1,5–2 раза, а токсичность отработавших газов уменьшить в несколько раз.

В настоящее время многие сельхозпроизводители в целях экономии финансовых средств часто приобретают ТСМ у не проверенных фирм и посредников. Проведенные нами анализы проб таких нефтепродуктов показали, что некоторые партии топлив и моторных масел использовать в двигателях машин нельзя.

Бензин. Мощность бензинового двигателя, надежность работы, его экономичность во многом зависят от качества применяемого топлива. Качество бензина зависит от его физико-химических свойств: фракционного состава, детонационной стойкости, теплоты сгорания и т. д.

Фракционный состав бензина – один из важнейших показателей, характеризующий его качество как для экономичной, так и надежной и долговечной работы двигателя. Так, от фракционного состава бензина зависит запуск двигателя и время, затрачиваемое на его прогрев; перебои в работе двигателя, вызываемые образованием паровых пробок или обледенением карбюратора; приемистость двигателя; расход топлива и масла; мощность двигателя; образование углеродистых отложений, а также в определенной степени износ трущихся деталей.

Для характеристики фракционного состава в стандарте указываются температуры, при которых перегоняется 10, 50 и 90% бензина, а также температуры начала и конца его перегонки.

По температуре начала перегонки (для летнего бензина не ниже 35°С) и перегонки 10% бензина (t 10%) судят о наличии в нем головных (пусковых) фракций, от которых зависит легкость пуска холодного двигателя. Повышенное содержание низкокипящих фракций в бензине не всегда является положительной особенностью. В этом случае увеличивается склонность бензинов к паровым пробкам в системе топливоподачи двигателя и значительно возрастают потери бензина на испарение при
хранении на нефтескладе.

После пуска двигателя интенсивность его прогрева, устойчивость работы на малой частоте вращения коленчатого вала и приемистость (интенсивность разгона автомобиля при полностью открытом дросселе) зависят главным образом от температуры перегонки 50% бензина (t 50%).

Чем ниже эта температура, тем легче испаряются средние фракции бензина, обеспечивая поступление в непрогретый еще двигатель горючей смеси необходимого состава, устойчивую работу на малой частоте вращения коленчатого вала двигателя и хорошую приемистость. По температуре перегонки 90% (t 90%) и температуре конца перегонки (кипения) судят о наличии в бензине тяжелых трудноиспаряемых фракций, интенсивности и полноте сгорания рабочей смеси и мощности, развиваемой двигателем. Для обеспечения испарения всего бензина, поступающего в цилиндры двигателя, эти температуры должны быть как можно более низкими.

Концевые фракции поступают в цилиндр не испарившись, они не участвуют в сгорании, и экономичность двигателя ухудшается. Тяжелые фракции бензина, осевшие на стенках цилиндра, смывают масло и увеличивают износ. Несгоревшее топливо откладывается на поверхностях камеры сгорания и поршней в виде нагара, который инициирует детонацию и калильное зажигание, нарушающие работу двигателя. Чем меньше t 90% и t к.п. бензина, тем лучше.

Проведенные нами анализы проб бензинов из различных хозяйств области показывают, что иногда используют бензины с высокой температурой конца кипения. Это объясняется тем, что нередко бензины перевозят в тех же автомобильных цистернах, в которых транспортируют дизельное топливо. В емкости всегда остается 30–40 кг топлива, которое при последующем ее заполнении смешивается с новым нефтепродуктом. Установлено, что при температуре конца перегонки бензина t к.п. = 230...2400С износ цилиндропоршневой группы двигателя увеличивается в два раза, а расход топлива повышается на 10%.

Дизельное топливо. В настоящее время хозяйствами области закупается дизельное топливо ЕВРО по ГОСТ Р 52368–2005. Согласно этого ГОСТа выпускаются 11 сортов дизельного топлива: A, B, C, D, E, F, а также классы: 0, 1, 2, 3, 4. Применение дизельного топлива по предельной температуре фильтруемости приведено в таблице.

Применение дизельного топлива по предельной температуре фильтруемости

летний период переходные весенний/
осенний периоды
зимний период
сорт
А
сорт
В
сорт
С
сорт
D
сорт
E
сорт F и
класс 0
класс
1
класс
2
класс
3
класс
4
не
выше
+5°С
не
выше
0°С
не
выше
–5°С
не
выше
–10°С
не
выше
–15°С
не
выше
–20°C
не
выше
–26°С
не
выше
–32°С
не
выше
–38°С
не
выше
–44°С

Все сорта выпускаются трех видов:

Пример записи дизельного топлива при заказе и в технической документации:
Топливо дизельное ЕВРО по ГОСТ Р 52368–2005 (ЕН 590:2009)
– сорт А (В, С, D, Е, F), вид I (вид II, вид III);
– класс 0 (1, 2, 3, 4), вид I (вид II, вид III).

Рекомендуемое сезонное применение дизельных топлив в Самарской области в соответствии с требованиями к предельной температуре фильтруемости:
– летний период (с 1 мая по 30 сентября (5 мес.) – сорт C;
– переходные весенний/осенний периоды (с 1 по 30 апреля (1 мес.) / с 1 по 31 октября (1 мес.) – сорт E;
– зимний период (с 1 ноября по 31 марта (5 мес.) – класс 1.

Дизельное топливо должно обладать хорошими распыливанием, смесеобразованием, испарением и прокачиваемостью, быстрым самовоспламенением; полностью сгорать, причем без дымления; не вызывать повышенного нагаро- и лакообразования на клапанах и поршнях, закоксовывания распылителя, зависания иглы распылителя, коррозии резервуаров, баков, деталей двигателя и т. д.

На качество смесеобразования наряду с конструкцией камеры сгорания двигателя влияют свойства применяемого топлива: плотность, вязкость, давление насыщенных паров, поверхностное натяжение, фракционный состав и др.

Повышение плотности топлива сказывается на процессе смесеобразования так же, как и увеличение вязкости: возрастает длина струи, ухудшается экономичность двигателя и увеличивается дымность. При малой плотности топлива уменьшается длина струи, ухудшается процесс смесеобразования и увеличивается износ прецизионных пар насоса высокого давления, для которого топливо одновременно служит смазочным материалом. Поэтому плотность дизельного топлива должна
быть оптимальной с учетом сезонности эксплуатации и других факторов и находиться в пределах при 15°С для сортов А, В, С, D, Е, F – 820–845 кг/ м3, для классов 1, 2, 3, 4 – 800–845 кг/м3.

Причина повышенной коррозии и износов деталей двигателя – наличие в топливе сернистых соединений, органических кислот, водорастворимых кислот и щелочей. На коррозионную агрессивность дизельных топлив существенно влияют сернистые соединения. Установлено, что общий износ деталей двигателя приблизительно прямо пропорционален содержанию серы в дизельном топливе. При температуре охлаждающей жидкости в двигателе ниже 70°С возрастает степень коррозионного износа, поскольку увеличивается образование серной кислоты. Продукты сгорания топлива, содержащие сернистый и серный ангидриды, проникают через неплотности цилиндропоршневой группы в картер, где образуют с водой серную и сернистую кислоты. Смешиваясь с маслом, кислоты ухудшают его качество, в частности антикоррозионные свойства, вызывают быстрое старение. Химическому износу подвергаются вкладыши подшипников, шейки коленчатых валов и другие детали. Особенно сильной коррозии подвержены вкладыши из свинцовистой бронзы.

В результате действия сернистых продуктов на картерное масло получаются смолистые соединения, которые затем образуют нагар. При наличии сернистых соединений увеличивается нагаро- и лакообразование в цилиндропоршневой группе. Из-за содержания серы нагар становится твердым, что приводит к абразивному изнашиванию цилиндропоршневой группы. Отложение лака в зоне поршневых колец ведет к их закоксовыванию и заклиниванию. Активные сернистые соединения (элементная сера, меркаптаны, сероводород) обладают высокой коррозионной агрессивностью, поэтому товарные топлива для ДВС не должны их содержать.

Проведенные нами многочисленные анализы проб дизельного топлива, полученных из различных районов области, показали, что очень часто закупаются партии топлива с большим содержанием активной серы, а это недопустимо. Работа двигателя на таком топливе неизбежно приведет к преждевременному выходу его из строя. Такие пробы мы получали из многих районов области.

Наличие воды и механических примесей в дизельном топливе служит одной из главных причин отказов топливной аппаратуры. Вода и механические примеси могут попадать в топливо, начиная от пути следования его из нефтезавода до использования в двигателе. Большинство механических примесей имеют большую твердость и вызывают повышенный износ деталей двигателя. Особенно вредны примеси для топливных насосов высокого давления, насосов-форсунок, форсунок. В прецизионных парах зазор составляет 1,5–3 мкм, поэтому даже небольшое количество механических примесей, размер которых соизмерим с зазором плунжерных пар, вызывает их интенсивное изнашивание. При использовании засоренного топлива срок службы топливной аппаратуры сокращается в 5–6 раз.

Перед заправкой в бак машины топливо должно отстаиваться не менее 10 дней. Чистота различных слоев топлива при этом будет неодинаковой.

Даже при 10-дневном отстое в нижних слоях топлива остаются мельчайшие частички механических примесей, представляющие наибольшую опасность для топливной аппаратуры. Машины необходимо заправлять топливом верхних слоев. Содержание механических примесей в дизельном топливе не допускается.

Моторное масло. Моторное масло должно надежно и длительно выполнять свои функции, обеспечивая заданный ресурс двигателя. Основные функции моторного масла в двигателях – уменьшение трения между трущимися поверхностями деталей; снижение износа трущихся поверхностей и предотвращение их заедания; охлаждение деталей; дополнительное уплотнение поршневых колец, защита деталей от коррозии и загрязнения углеродистыми отложениями.

От вязкости моторного масла при рабочих температурах в двигателе зависят качество смазывания трущихся поверхностей деталей и их износ. Вязкость моторного масла, в свою очередь, зависит от температуры, с увеличением которой она понижается, а с уменьшением – повышается. Интенсивность изменения вязкости масла при изменении температуры у разных моторных масел различна. Крутизну вязкостнотемпературной кривой оценивают по индексу вязкости. Чем выше индекс вязкости, тем лучше технико-эксплуатационные свойства моторных масел.

Оценивая вязкость проб моторных масел, представленных нам из различных хозяйств области, мы установили, что в основном вязкость проверяемых масел соответствует требованиям ГОСТ 17479.1–85. Однако иногда вместо заявленного зимнего моторного масла проба соответствует летнему маслу и наоборот.

Очень важными эксплуатационными показателями моторного масла являются его антиокислительные и антикоррозионные свойства. Эти свойства моторных масел зависят главным образом от эффективности антикоррозионных и антиокислительных присадок, а также от состава базовых компонентов. В процессе работы масла в двигателе коррозионность значительно возрастает.

Антикоррозионные присадки защищают вкладыши подшипников и другие детали, выполненные из цветных металлов, образуя на их поверхности прочную защитную пленку.

Нейтрализующая способность – это важнейшее химическое свойство моторных масел, характеризуемое щелочным числом. Оно показывает, какое количество кислот, образующихся при окислении масла или попадающее в него из продуктов сгорания топлива, может нейтрализовать единица массы масла. Щелочное число масла обусловливается содержанием в них моющих и диспергирующих присадок, обладающих щелочными свойствами и препятствующих отложению смолисто-асфальтовых веществ на деталях кривошипно-шатунного механизма и особенно на деталях цилиндропоршневой группы двигателей в виде лаков и нагаров.

Чем выше концентрация присадки в масле (щелочное число), тем меньше нагарообразование в двигателе. Однако концентрация присадки в масле во время работы двигателя постепенно снижается (срабатывается) и защитные свойства масла ухудшаются. Это является одним из основных признаков необходимости замены масла в двигателе.

Анализы проб моторных масел показали, что очень часто по щелочному числу масла не соответствуют ГОСТ 17479.1–85. Так, например, у масла М-10Г2 щелочное число должно быть не менее 6,0 мг КОН/г, а оно часто составляет всего 3,5–4,0 мг КОН/г, у масла М-10Д2М вместо 8,2 мг КОН/г 5,5–6,5 мг КОН/г. Срок службы таких масел значительно меньше, и они должны заменяться в двигателе чаще. А это дополнительные затраты труда и денежных средств.

Таким образом, все вышеприведенное свидетельствует о том, что качество топливо-смазочных материалов значительно влияет на техническое состояние машин. Перед их приобретением и применением необходимо убедиться, что качество покупаемых материалов соответствует требованиям ГОСТов.