Лекция на тему "Продольные и крутильные колебания валов. Вибрация корпуса"

Испытывают деформации сдвига. Имеют место в разл. машинах с вращающимися валами: в поршневых двигателях, турбинах, генераторах, редукторах, трансмиссиях транспортных машин.

К. к. возникают в результате неравномерности периодич. момента как движущих сил, так и сил сопротивления. Неравномерность крутящего момента вызывает неравномерность изменения угловой скорости вала, т. е. то , то замедление вращения. Обычно вал представляет собой чередование участков с малой массой и упругой податливостью с более жёсткими участками, на к-рых закреплены значит. массы. В каждом сечении вала будет своя степень неравномерности вращения, поскольку в одинаковый промежуток времени массы проходят разные углы и, следовательно, движутся с разными скоростями, что создаёт переменное вала и динамич. знакопеременные напряжения, гл. обр. касательные.

При совпадении частот собств. колебаний системы с частотой периодич. крутящего момента движущих сил и сил сопротивления возникают резонансные колебания. В этом случае повышается уровень динамич. переменных напряжений; возрастает акустич. , излучаемый работающей машиной. Динамич. знакопеременные напряжения при неправильно выбранных (заниженных) размерах вала, недостаточной прочности его материала и возникновении резонанса могут превысить предел выносливости, что приведёт к усталости материала вала и его разрушению.

При расчёте К. к. валов машин часто пользуются расчётной схемой с двумя дисками, соединёнными упругим стержнем, работающим на кручение. В этом случае собств. частота

где I 1 - момент инерции 1-го диска, I 2 - момент инерции 2-го диска, С -крутильная стержня, Для круглого стержня диаметром d и длиной l С где G - модуль сдвига. Более сложные расчётные схемы содержат большее число дисков, соединённых стержнями и образующих последоват. цепи, а иногда - разветвлённые и кольцевые цепи. Расчёт собств. частот форм и вынужденных К. к. по этим расчётным схемам производится на .

Др. примером К. к. является крутильный , к-рый представляет собой диск, закреплённый на одном конце стержня, работающего на кручение и жёстко заделанного др. концом. Собств. частота такого маятника где I - момент инерции диска. Приборы с использованием крутильного маятника применяют для определения модуля упругости при сдвиге, коэф. внутр. трения твёрдых материалов при сдвиге, коэф. вязкости жидкости.

К. к. возникают в разнообразных упругих системах; в нек-рых случаях возможны совместные колебания с разл. видами деформации элементов системы, напр. изгибно-крутильные колебания. Так, при определ. условиях полёта под действием аэродинамич. сил иногда возникают самовозбуждающиеся изгибно-крутильные колебания крыла самолёта (т. н. флаттер), к-рые могут вызывать разрушение крыла.

Лит.: Ден-Гартог Д. П., Механические колебания, пер. с англ., М., 1960; Маслов Г. С., Расчёты колебаний валов. Справочник, 2 изд., М., 1980; Вибрации в технике. Справочник, под ред. В. В. Болотина, т. 1, М., 1978; Силовые передачи транспортных машин, Л., 1982. А. В. Синев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "КРУТИЛЬНЫЕ КОЛЕБАНИЯ" в других словарях:

    Колебания элементов конструкций и машин, выражающиеся в периодически меняющейся деформации кручения (См. Кручение). Пример К. к. гармоническое движение крутильного маятника, представляющего собой упругий стержень, закрепленный одним… …

    Один из видов колебаний упругих систем, при к рых отд. элементы системы испытывают деформации кручения. Пример К. к. движение крутильного маятника, представляющего собой упругий стержень, закреплённый одним концом, с массивным диском на другом.… … Физическая энциклопедия

    крутильные колебания - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN torsional modestorsional oscillations … Справочник технического переводчика

    крутильные колебания - 3.7 крутильные колебания: По ГОСТ Р ИСО 3046 5. Источник: ГОСТ Р 53638 2009: Двигатели внутреннего сгорания поршневые. Общие технические условияСловарь-справочник терминов нормативно-технической документации

    крутильные колебания - sukamieji virpesiai statusas T sritis chemija apibrėžtis Molekulės atomų branduolių kvantuotojo judėjimo rūšis. atitikmenys: angl. torsion oscillations; torsion vibrations; torsional oscillations; torsional vibrations rus. крутильные колебания … Chemijos terminų aiškinamasis žodynas

    крутильные колебания - sukamieji virpesiai statusas T sritis fizika atitikmenys: angl. torsion oscillations; torsional oscillations; torsional vibrations vok. Drillungsschwingungen, f; Torsionsschwingungen, f; Verdrehungsschwingungen, f rus. крутильные колебания, n… … Fizikos terminų žodynas

    крутильные колебания - torsion vibration Колебания, при которых происходит кручение элемента механизма. Шифр IFToMM: 3.9.26 Раздел: КОЛЕБАНИЯ В МЕХАНИЗМАХ … Теория механизмов и машин

    КОЛЕБАНИЯ В МЕХАНИЗМАХ - см. также о словаре автоколебания автоколебательная система автономная колебательная система амплитуда … Теория механизмов и машин

    Число колебаний в единицу времени, быстрота или частота колебаний, зависит от размеров, формы и природы тел. Высота звука, обуславливаемая числом колебаний звучащего тела в единицу времени, может быть определена различными способами (см. Звук).… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Многократно повторяющееся возвратно поступательное или возвратно вращательное движение элементов конструкций вследствие их упругих деформаций под действием сил, достаточно быстро меняющихся во времени. При К. к. элементы конструкций… … Большая советская энциклопедия

Книги

  • Крутильные колебания коленчатых валов , Нейман И.Ш. Крутильные колебания коленчатых валов Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство`Академия`). В…

Важным случаем упругих колебаний являются так называемые крутильные колебания, при которых тело поворачивается туда и обратно около оси, проходящей через его центр тяжести.

Если, например, подвесить на проволоке диск (рис. 18), повернуть его так, чтобы проволока закрутилась, и затем отпустить, то диск начнет раскручиваться, закрутится в обратную сторону и т. д., т. е. будет совершать крутильные колебания. При этом также дважды за период имеет место переход кинетической энергии движущегося диска в потенциальную энергию (энергию деформации) закручивающейся проволоки и обратно. Крутильные колебания нередко имеют место в валах двигателей, в частности в гребных валах теплоходных машин, и при известных условиях, о которых речь будет ниже, могут оказаться очень вредными.

Рис. 18. Крутильные колебания диска, подвешенного на проволоке
В ручных и карманных часах нельзя использовать подвесной маятник; в них применяется так называемый балансир (рис. 19) — колесико, к оси которого прикреплена спиральная пружина («волосок»). Балансир периодически поворачивается туда и обратно, причем при этих крутильных колебаниях пружинка изгибается (раскручивается и закручивается) в обе стороны от своего равновесного состояния. Таким образом, балансир представляет собой крутильный маятник.

Рис. 19. Часовой балансир
Для периода крутильных колебаний сохраняют силу те же закономерности, что и для периода любых упругих колебаний: период тем больше, чем меньше жесткость системы и чем больше ее масса (при неизменной форме).

При крутильных колебаниях существенна не только масса тела, но и ее распределение относительно оси вращения. Если, например, мы подвесим на проволоке гантель, состоящую из спицы, на которую симметрично насажены два одинаковых груза 1 и 2 (рис. 20), то при раздвигании грузов частота крутильных колебаний будет уменьшаться, хотя масса гантели остается прежней. Оставляя грузы 1 и 2 на прежних местах, но беря их более массивными, мы увидим, что частота тоже делается меньше.

Крутильные колебания при небольших углах закручивания (малых угловых амплитудах) также являются гармоническими. Период их определяется соотношением

где k — жесткость системы. Численно жесткость k равна вращающему моменту, дающему поворот на 1 радиан. Если упругие силы обусловлены закручиванием нити или проволоки, то k — это так называемая крутильная жесткость этих тел. Величина I характеризует распределение массы относительно оси вращения (так называемый момент инерции, играющий во вращательном движении такую же роль, какую играет масса в поступательном движении). Например, для гантели I=2mr2, где m — масса каждого груза, а r— расстояние от грузов до оси вращения.

Рис. 20. Крутильные колебания гантели

Тема. Крутильные колебания коленчатого вала.

Крутильные колебания , возникающие под влиянием внешних сил, называются вынужденными. Частота вынужденных колебаний равна частоте приложения возмущающих сил. Если частота вынужденных крутильных колебаний совпадает с частотой собственных, то возникает явление резонанса. При этом амплитуда колебаний будет возрастать до максимального размера, что может привести систему к разрушению.

Если на длинном валу закрепить через определенные промежутки несколько маховиков и повернуть их на некоторый угол, закрутив тем самым участки вала между маховиками, а затем отпустить, то получим сложные крутильные колебания (рис.95,б). Коленчатый вал дизеля можно также представить себе состоящим из упругих участков, между которыми закреплены массы, представляющие собой кривошипы с присоединенными к ним шатунами и поршнями. К этой системе добавляется также вращающаяся масса якоря генератора, присоединенного к коленчатому валу через дизель-генераторную муфту.

Во время работы дизеля на коленчатый вал действуют усилия от давления газов на поршни и инерционные усилия от движущихся частей. Воздействия эти регулярно повторяются в определенной последовательности и с частотой, пропорциональной частоте вращения коленчатого вала. Благодаря переменному характеру приложения вращающего момента массы, закрепленные на валу, будут совершать крутильные колебания, при которых происходит периодическое закручивание и раскручивание упругих участков вала.

Рис 95. Системы крутильных колебаний:

а – одномассовая; б – многомассовая.

Многомассовая система будет иметь не одну частоту собственных колебаний, а несколько (на единицу меньше числа закрепленных маховиков).

Крутильные колебания накладываются на установившееся вращение вала. Так как коленчатый вал дизеля имеет несколько вращающихся масс, то он имеет и несколько собственных частот крутильных колебаний.

Например, коленчатый вал дизеля ПД1М, несущий шесть цилиндровых масс и массу генератора, имеет шесть собственных частот колебаний 5100, 13 700, 22 000 кол/мин и т. д. При работе дизеля частота изменения возмущающих сил - сил инерции и сил от давления газов - пропорциональна частоте вращения вала.

Частоту возмущающей силы , равную частоте вращения вала дизеля, называют основной частотой, или 1-й гармоникой. Возмущающие силы в дизелях обычно состоят из нескольких гармоник. Если частота какой-либо гармонической составляющей совпадает с одной из собственных частот валопровода, то наступает резонанс. Частота вращения вала, при которой возникает резонанс, называется критической. Работа дизеля при критической частоте недопустима, так как при этом наблюдается тряска его, быстрый износ и разрушение подшипников, а иногда поломка коленчатого вала и других деталей.

Чтобы предотвратить эти явления, изменяют размеры вала, маховые массы, расположение их, увеличивают жесткость вала, уменьшают массу поршневой группы, с тем чтобы рабочий диапазон вращения вала удалить от критической частоты. Однако часто бывает и этого недостаточно, тогда для гашения резонансных крутильных колебаний применяют демпферы (гасители) или маятниковые антивибраторы.

Демпферы - создают сопротивления крутильным колебаниям и гасят их энергию и при резонансных частотах снижают амплитуду углов поворота масс.

Антивибраторы - изменяют частоты собственных колебаний вала так, чтобы они не совпадали с гармоническими составляющими возбуждающих моментов.

Работа маятникового антивибратора на схеме (рис. 96, а, б, в). Прохождение груза из одного крайнего положения в другое, а затем возвращение его в первоначальное крайнее положение называется полным колебанием, а время прохождения грузов указанного расстояния - периодом колебания. На схеме (рис. 96, а) груз А подвешен на стержне и при приложении силы совершает свободные колебания с определенной угловой амплитудой, максимальное значение которой составляет Ф1 Подвесив к системе дополнительный груз Б (рис. 96, б) и приложив ту же силу, что и в первом случае, амплитуда колебаний грузов будет меньше и частота свободных колебаний будет другой чем частота колебаний груза А.

На этом принципе устроены и тепловозные антивибраторы маятникового типа. К диску 1 вала по периметру подвешиваются с ограниченной подвижностью дополнительные грузы 3 (рис. 96, в), положение которых при вращении вала определяет частоту и амплитуду свободных колебаний вала. При равномерном вращении вала (ускорение е = 0) грузы 3 остаются в среднем положении. Если по какой-либо причине частота вращения вала начинает возрастать (е>0), приближаясь к критической, грузы 3 в силу своей инерционности будут сохранять первоначальную частоту вращения, отклоняясь назад и препятствуя закручиванию вала, изменяя частоту собственных его колебаний.

Крутильные колебания или вибрации возникают в процессе из-за его неравномерной по разные стороны формы и маховика. В этой статье мы поговорим о том, откуда они возникают, чем опасны, и расскажем об устройстве, снижающим воздействие этих вибраций – гаситель крутильных колебаний.

Любой маховик двигателя имеет определенную массу, которая не в полной мере сочетается с коленчатым валом мотора. При вращении коленвала, маховик, обладая большой массой, начнет колебаться, что приводит к появлению определенных вибраций не только на нем, но и на валу. Частота и амплитуда колебаний будет напрямую зависеть от массы маховика, а также его радиуса. Чем больше расстояние от края до центра и больше масса маховика, тем выше эта частота колебаний.

При уменьшении воздействия, которое прилагается от поршней и шатунов, уменьшаются и вибрации. Логично предположить, что если не прилагать большую нагрузку на коленвал, от этих вибраций можно избавиться, однако мы не в состоянии постоянно снижать нагрузку на вал, так как автомобиль все время находится в движении. Данный вид колебаний, получаемых при воздействии на маховик внешних сил, называется вынужденным.

Опасным явлением, в которое могут перерасти колебания – это резонанс. В процессе вращения маховика, он находится в механической связи с первичным валом коробки передач. Вал КПП также имеет небольшую величину вибраций, которая взаимно передается на маховик коленвала. Если эти колебания совпадают, это приводит к резонансу – пропорциональному повышению колебаний обоих механических элементов и, как следствие, к разрушению обоих валов.

Гаситель крутильных колебаний

Как вы поняли, совпадение частот этих вибраций совершенно не допустимо, именно поэтому в трансмиссии автомобиля предусмотрено специальное устройство – демпфер. Он устанавливается на диске сцепления автомобиля и имеет специальную конструкцию. Задача демпфера заключается в создании самой упругой связи диска сцепления с его небольшой ступицей на коленчатом валу.

Демпфер представляет собой пружины цилиндрической формы, которые по кругу устанавливаются на всей внутренней окружности диска сцепления. Пружины гасителя обеспечивают защиту трансмиссии автомобиля от совпадения частот колебаний маховика и сцепления на больших оборотах вращения коленвала. Однако, такое устройство не способно обеспечить надежную защиту при низких частотах колебаний. Специально для этого служить другое устройство, которое называется поглотитель низкочастотных колебаний.

В грузовых же автомобилях на сцеплении вместо демпферных пружин применяются круглые, сжимаемые при скручивании элемента. Главное отличие от демпфера – это отсутствие необходимо проводить широкую регулировку элемента. Такая пружина в процессе вращения сжимается и с помощью повышения трения передает вращающий момент на первичный вал КПП.

Видео - Теория ДВС: Коленвал часть 2, "Гаситель крутильных колебаний"

Вот так происходит снижение крутильных колебаний в двигателе и трансмиссии автомобиля при эксплуатации. Как видим, здесь нет ничего сложного или непонятного. Желаем вам удачи на дорогах!

Цель работы : определение момента инерции некоторых тел относительно оси вращения, проходящей через центр масс, иссле­дование влияния на момент инерции переноса осей вращения (про­верка теоремы Штейнера методом крутильных колебаний).

Принадлежности : трифилярный подвес, секундомер, штан­ген­циркуль, тела для измерения момента инерции.

Вопросы, знание которых необходимо для допуска к выполнению работы

1. Угловая скорость. Связь между угловой скоростью тела и ли­нейной скоростью его точек. Единицы измерения.

2. Угловое ускорение. Связь между угловым ускорением тела и линейным ускорением его точек. Единицы измерения.

3. Что называется плечом силы?

4. Что называется моментом силы? Чем обусловлены его величина и направление? Единицы измерения.

5. Что называется моментом инерции твердого тела? Единицы из­мерения. От чего зависит величина момента инерции?

6. Напишите и поясните основное уравнение динамики вращательного движения. Какова роль момента инерции в этом уравнении?

7. Сформулируйте теорему Штейнера.

8. В чем отличие крутильных колебаний от колебаний физического маятника?

9. Почему натяжение нитей трифилярного подвеса должно быть одинаково?

10. Под действием какой силы трифилярный подвес совершает кру­тильные колебания?

11. Расскажите порядок выполнения работы.

ВВЕДЕНИЕ

При рассмотрении вращения твердого тела с динамической точки зрения понятие о силах заменяется понятием о моментах сил, понятие о массе - понятием о моменте инерции. Если разделить мысленно вращающееся твердое тело на n эле­ментарных масс Dm i , находящихся на расстоянии r i от оси вра­щения, то все они будут иметь в данный момент одинаковые угло­вые скорости и угловые ускорения .

Момент инерции материальной точки численно равен произведению массы точки Dm i на квадрат расстояния r i от оси вращения: Dm i ×r i 2 . Момент инерции всего твердого тела J численно равен сумме моментов инерции всех его точек:

. (1)

Величина момента инерции тела зависит от характера распределения масс относительно оси вращения и поэтому одно и то же тело может иметь разные моменты инерции относительно разных осей.

Если тело может вращаться вокруг неподвижной оси, то изменение его движения зависит от действующего на него момента силы. Моментом силы относительно неподвижной оси называется величина, численно равная произведению силы F на ее плечо h. Плечо силы – есть кратчайшее расстояние от центра вращения до линии действия силы.

Вращательное движение тела характеризуется угловой скоростью w и угловым ускорением b:

w = ; b = , (3)

где j - угловое перемещение тела.


Для случая параллельных осей применима теорема Штейнера: момент инерции относительно любой оси вращения равен сумме момента инерции относительно оси вращения, проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями (d):

J = J 0 + md 2 . (5)

Например. Подсчитаем момент инерции cплошного стержня длины l относительно оси О"О’ 1 , проходящей через конец стерж­ня (рис.1). По теореме Штейнера J = J 0 + md 2 . Момент инерции относительно оси oo 1 , прохо­дящей через центр масс, J 0 равен: .

Следовательно,

.

На практике момент инерции тела мож­но определить методом трифилярного подвеса.

Трифилярный под­вес представляет собой круглую платформу, подвешенную на трех симметрично расположенных нитях, укреплен­ных у краев этой платформы. Наверху эти нити также симметрично прикреплены к диску несколько меньшего диаметра, чем диаметр платформы (рис. 2).

Платформа может совершать крутильные колебания вокруг вер­тикальной оси, перпендикулярной к ее плоскости и проходящей через ее центр. Центр тяжести платформы при этом перемещается по оси вращения. Период колебания определяется величиной мо­мента инерции платформы, он будет другим, если платформу на­грузить каким-либо другим телом. Этим и пользуются в настоящей работе. Если платформа массы m, вращаясь в одном направле­нии, поднялась на высоту h, то приращение потенциальной энергии будет равно E 1 = mgh. Вращаясь в другом направле­нии, платформа пройдет через положение равновесия с кинетичес­кой энергией, равной , где J - момент инерции платформы; w 0 - угловая скорость платформы в момент прохождения ею положения равновесия. Пренебрегая работой сил трения, на основании закона сохранения механической энергии имеем:

Считая, что платформа совершает гармонические колебания, можем написать зависимость углового смещения j платформы от времени в виде:

, (7)

где a 0 - амплитуда колебаний, Т - период колебаний, t - текущее время. Угловая скорость, являющаяся первой производной j по времени, выражается как:

В момент прохождения через положение равновесия (t = 0; (1/2)T; (3/2)Т и т.д.) абсолютное значение этой величины будет

Из (6) и (9) имеем:

. (10)

Поворот платформы на угол a 0 около оси ОО" соответствует ее поднятию на высоту h. Если l - длина нитей подвеса, R - расстояние от центра платформы до точек крепления нитей на ней, r - радиус верхне­го диска, то легко видеть (рис. 3), что

.

Так как (ВС) 2 = (АВ) 2 - (AC) 2 = l 2 - (R - r) 2 ,

(ВС 1) 2 = (ВА 1) 2 - (А 1 С 1) 2 = l 2 - (R 2 + r 2 - 2R×r×cosa 0),

то .

При малых углах отклонения a 0 значение синуса этого угла можно заменить просто значением a 0 (a® sina » a), а величину знаменателя при выполнении условия (R - r)<l . Тогда

h = и mg = × ,

По формуле (11) может быть определен не только момент инерции платформы, но также и тела, помещенного на нее, поскольку все величины в правой части формулы могут быть непосредственно из­мерены.

Вращательный импульс, необходимый для начала крутильных колебаний, сообщается платформе путем поворота верхнего диска вокруг его оси при помощи натяжения шнура, приводящего в движе­ние рычажок, связанный с диском. Этим достигается почти полное отсутствие других не крутильных колебаний, наличие которых за­трудняет измерения.

Для удобства отсчета колебаний на платформе имеется метка, против которой при покоящейся платформе устанавливается указатель - стержень на подставке.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Сообщают пустой платформе вращательный импульс и при помощи секундомера измеряют время 20 полных колебаний (t 0), что да­ет возможность достаточно точно определять величину периода Т 0 .

2. По формуле (11) определяют момент инерции пустой плат­формы J 0 .

3. Путем взвешивания определяют массу исследуемого тела (m), а затем нагружают им платформу и вновь измеряют время t 20 колебаний, а затем и период колебания Т всей системы.

4. По формуле (11) вычисляют момент инерции всей сис­темы J 1 , принимая ее массу равной сумме масс тела (m) и платформы (m 0). Величина момента инерции тела J определяется как разность J = J 1 - J 0 .

5. Данные заносятся в таблицу 1 и вычисляются абсолютная и относительная погрешности.

6. При помощи трифилярного подвеса проверяется теорема Штейнера, для чего необходимо иметь два совершенно одинаковых тела. Сначала определяют момент инерции этих тел, положив их одно на другое в центре платформы. Затем оба тела располага­ют симметрично на платформе и определяют их момент инерции. Половина этой величины и будет давать момент инерции одного тела, находящегося на фиксированном расстоянии от оси враще­ния. Зная это расстояние, массу тела, момент инерции тела, положенного в центре платформы, можно проверить теорему Штейнера.

Таблица 1

№ п/п r, м Dr, м R, м DR, м l , м m 0 , кг t 0 , c T 0 c DT 0 , c m, кг t, с Т, с DТ, с
Среднее значение

Тела на платформе следует располагать строго симметрично, так, чтобы не было перекоса платформы, для чего на платформе нанесены концентрические окружности на определенном расстоянии друг от друга. При измерениях необходимо использовать амплитуды колебаний, большие чем 5-6°.

1. Савельев И.В. Курс общей физики. T. I. - М.: Наука, 1989.

2. Архангельский М.М. Курс физики: механика. - М.: Просвещение, 1975. С. I69-I93.

3. Ливенцев Н.М. Курс физики.- М.: Высшая школа, 1974. § 11-13.

4. Грабовский В.И. Курс физики.- М.: Высшая школа, 1970. §21-23.

5. Эткинс П. Физическая химия. - М.: Мир. 1980.

6. Кац Ц.Б. Биофизика на уроках физики. - М.: Просвещение, 1988.