Смотреть что такое "индуктивность" в других словарях. Индуктивность соленоида

Пусть через единственный виток течет ток I . Через поперечное сечение, охватываемое витком, существует магнитный поток Φ 1 , пропорциональный этому току.
Коэффициент пропорциональности между ними L и называют индуктивностью: $$ L = \Phi_1/I $$

Для катушки из N витков общий магнитный поток будет складываться из потоков отдельных витков. Эта суммарная величина называется потокосцеплением $$ \Psi=\sum\limits_{k=1}^{N} \Phi_k $$ и также пропорциональна току. Следовательно, в этом случае: $$ \boxed{ L=\Psi/I} $$

✔ Индуктивность катушки есть коэффициент пропорциональности между потокосцеплением и протекающим по ней током.

В произвольно спутанном клубке провода выделить витки и поверхности не представляется возможным. Поэтому наиболее общим является определение индуктивности по создаваемой проводником энергии магнитного поля $$W={LI^2\over 2}$$

$$\boxed{L= {1\over {\mu_0 I^2} } \int\limits_V {B^2 \over \mu}dV}}$$

✔ Индуктивность это мера способности проводника с током накапливать энергию в окружающем его магнитном поле. Она равна отношению удвоенной энергии поля к квадрату протекающего тока.

Как рассчитать индуктивность в практически важных случаях?

Наиболее важны три случая: тороидальная катушка, однослойная катушка, уединенный проводник (для оценки индуктивности монтажа).

Индуктивность тороида.

Считается по общей формуле: $$ \boxed{ L={{\mu \mu_0 S} \over {l_a}}n^2}$$

Где S - сечение магнитопровода, l a - средняя длина магнитной линии, μ 0 = 4π⋅10 -7 - магнитная постоянная, μ - проницаемость материала, n - число витков.

У ферритового кольца прямоугольного сечения длина и площадь рассчитывается по внешнему диаметру D , внутреннему диаметру d и высоте h:

$$ l_a={\pi \over 2} (D+d) $$ , $$ S= {h \over 2} (D-d) $$ , $$ L={ {\mu_0 \mu (D-d) h } \over {(D+d)}}n^2 $$


Данную формулу удобно привести к инженерному виду: $$ L = A_L \, n^2 $$ , $$ n = \sqrt{L/A_L} $$

Все эти соотношения можно записать в простой скрипт wxMaxima

Смотреть скрипт

Mu_0:4*%pi*1e-7 $

// D - наружний, d - внутренний диаметры, h - высота кольца [м]

Mu:3000 $
D:20e-3 $
d:12e-3 $
h:6e-3 $
n:10 $

// Расчетная формула [Си], L - Гн

S:h*(D-d)/2 $
la:%pi*(D+d)/2 $
L=mu*mu_0*n*n*S/la;

L=1.8*10^-4

Величина A L для некоторых типов ферритовых колец дана в Таблице 1.

Индуктивность однослойной катушки.

Считается по формуле Вилера (1928): $$ \boxed{ L={0,01D \over l/D+0,44} n^2}$$ D - диаметр в см, - l длина намотки в см, L - индуктивность в мкГн.

Индуктивности уединенных проводников.

Индуктивность в Гн прямого провода длиной l и радиуса r в м: $$ \boxed {L \approx {\mu_0l \over 2 \pi} \left(ln \left({2l \over r}\right)-0,75 \right) } $$

Индуктивность в Гн полосковой линии длиной l шириной w в м: $$ \boxed {L \approx {\mu_0 l \over \pi} \left(ln \left({2l \over w} \right)+0,5 \right)} $$

Индуктивность катушки в броневом сердечнике.

Считается по общей формуле, где сечения магнитопровода S и средние длины магнитной линии $$ la $$ даны в ГОСТ 19197-73. Но следует учесть, что эффективная магнитная проницаемость очень сильно зависит от толщины воздушного зазора $$ l_b $$ между чашками. Например, для чашки Б9 с магнитной проницаемостью 1500 при зазоре 0,1 мм эффективная проницаемость и индуктивность падают почти на порядок.

С учетом зазора индуктивность катушки в броневом сердечнике:

$$ \boxed{L = {{\mu_0 \, \mu} \over{ 1+\mu \cdot \l_b /l_a}}{{S n^2} \over{l_a}}} $$

Где все величины даны в СИ; сечения и длины указаны в Таблице 2.

Таблица 2. Эффективные параметры ферритовых чашек
Размер Средняя длина магнитной линии la , см Сечение магнитопровода S , см 2
Б6 1,04 0,07
Б9 1,26 0,11
Б11 1,54 0,18
Б14 1,89 0,28
Б18 2,49 0,48
Б22 3,04 0,69
Б26 3,6 1,01
Б30 4,44 1,38
Б36 5,4 2,2
Б42 6,17 2,48
Б48 6,92 3,74

Как получить формулы для расчета?

Это сложная задача, связанная с аналитическим или численным решением уравнений электромагнитного поля . Но в некоторых случаях, например для тороидальной катушки, возможен и относительно простой расчет.

Для произвольного контура $$l$$ верна теорема о циркуляции вектора напряженности магнитного поля $$\vec{H}$$.

$$\oint \vec{H} \vec{dl}= \sum {i_k} $$ (1)

Знаки тока связаны с направлением обхода контура $$\vec{dl}$$ правилом правого буравчика. Допустим вектор поля направлен по острию буравчика.
Если ток обегает его по часовой стрелке (как I 1 на Рис.1) то он положителен, иначе отрицателен (как I 2 ).

Пусть имеется тороидальный магнитопровод с магнитной проницаемостью µ и на нем в один ряд плотно намотана обмотка изолированного провода с числом витков n и протекающим током I . В этих условиях поле в магнитопроводе можно считать однородным и формула (1)
запишется просто как:

$$ H \cdot l_a = n \cdot I $$ (2)

Где l a средняя длина окружности тороида. Из электротехники известно, что индуктивность катушки L связана с ее реактивным сопротивлением $$X_L$$ следующим образом.

$$ L= {{X_L} \over {\omega}} $$ (3)

$$ X_L={{ U_m }\over {I_m}} $$ (4)

Где Im - амплитуда сиусоидального тока, Um - амплитуда его напряжения. Как найти эти величины?
Im определяется сразу из формулы (2):

$$ I_m={{H_m l_a} \over {n}}={{B_m l_a} \over { \mu \mu_0 n }} $$ (5)

Где $$ \mu_0=4\pi \cdot 10^{-7} $$ физическая константа.

Чтобы найти амплитуду напряжения надо вспомнить закон электромагнитной индукции Фарадея:

$$ \mathcal{E} = -n{ {d \Phi} \over { dt} }} $$

Где $$ \Phi=BS $$ - магнитный поток однородного поля, $$ B=B_m exp(-j \omega t) $$ - магнитная индукция, меняющаяся по синусоидальному закону с круговой частотой $$ \omega $$.

Отсюда амплитуда напряжения на катушке:

$$ U_m=- \mathcal{E}_m= \omega n B_m S $$ (6)

Остается найти L. Подставив в (4) формулы (5) и (6) и поделив полученное на круговую частоту имеем:

$$\boxed { L={{\mu \mu_0 S n^2} \over {l_a}}} $$ (7)

Все величины в этой формуле выражены в системе СИ: индуктивность - Гн, длина - м и площадь м 2 .

Реальная индуктивность всегда меньше, чем по формуле (7) из-за рассеяния магнитного потока.

Расчетные программы

Конечно же, при современном уровне вычислительной техники расчет по формулам имеет смысл скорее для обучения и тренировки. Для сложных инженерных расчетов уже нет надобности неделями штудировать учебники электродинамики или искать редкие справочники. Эту задачу легко решает хорошая и открытая программа Coil32 . Автор программы поддерживает три ее версии - под Linux, Windows и Android.

Я пробовал Linux версию в ОС ALT Linux. Она работает и позволяет рассчитать три вида катушек: однослойную, многослойную и катушку на ферритовом кольце.



Версия под windows имеет больше вариантов расчета - индуктивность плоской катушки, уединенного проводника, катушки с произвольным шагом и т.п. Она без проблем запускается под wine и при желании Вы можете использовать ее.



Литература

  1. Калантаров П. Л., Цейтлин Л. А. Расчет индуктивностей: Справочная книга. - 3-е изд., перераб. и доп. Л.: Энергоатомиздат. Ленингр. отд-ние, 1986. -488 с: ил.

- Катушка индуктивности -

Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка "Массовой радиобиблиотеки" изданная в 1964 году, как перевод книги О. Кронегера в ГДР в 1061 году. Не смотря на такую ее древность, она является моей настольной книгой (наряду с несколькими другими справочниками). Думаю время над такими книгами не властно, потому что основы физики, электро и радиотехники (электроники) незыблемы и вечны.

Единица индуктивности генри (гн) - индуктивность такой катушки, в которой возникает э д.с. самоиндукции, равная 1 в, при изменении силы тока в этой катушке на 1 а в 1 сек.
В радиотехнике чаще применяют более мелкие единицы индуктивности, см. Таблицу 3
Менее употребительна единица индуктивности, заимствованная из абсолютной системы единиц:
1 см=10 -9 гн=1 нгн=10 -3 мкги=10 -6 мгн.
Индуктивность может быть вычислена по формуле:
Следовательно, индуктивность прямо пропорциональна квадрату числа витков w и обратно пропорциональна магнитному сопротивлению R м:
где:

l - длина магнитной линии, см;
μ - абсолютная магнитная проницаемость, гн/см;
q - площадь поперечного сечения магнитного потока, см 2 .
В настоящее время в технике принята величина, обратная.Rк, - так называемый „коэффициент индуктивности витка".

Этот коэффициент A l иногда приводится в технических данных на магнитмые материалы:

Величина абсолютной магнитной проницаемости μ зависит от материала. Для магнитных материалов в литературе указывается относительная магнитная проницаемость μr г, а абсолютная магнитная проницаемость рассчитывается по формуле
где:
Символом μ 0 обозначается магнитная проницаемость вакуума или магнитная постоянная. Относительная магнитная проницаемость является безразмерной величиной.
Энергия, запасаемая в магнитном поле при его образовании, составляет:
где:

L - индуктивность, гн;
I- ток, а.

Электродвижущая сила , наводимая в катушке, имеющей ω витков, рассчитывается по формуле
Так как в цепи, обладающей индуктивностью, значение тока не может измениться скачком, то при подключении катушки к источнику постоянного напряжения (рис. 7) и при размыкании цепи ток в последней изменяется по законам, которые подобны законам изменения напряжения на емкости в цепи с сопротивлением и емкостью.
При Ri < Rl практически можно учитывать только сопротивление R l . Ток в цепи при замыкании ключа K1,
где:

Ri - внутреннее сопротивление источника, ом;
R L - сопротивление катушки, ом;
Е- э. д. с. источника, в;
t - время, сек;
τ L - постоянная времени цепи, сек;
L- индуктивность, гн.
Постоянная времени в этом случае

Ток в цепи при выключении э. д. с. Е (на рис. 7 разомкнут контакт K 1 и замкнут контакт K 2)
Постоянная времени при этом
Интервал времени, за который ток достигает половины максимального значения,
При последовательном соединении катушек без взаимоиндукции (рис. 8) общая индуктивность

L общ = L 1 + L 2 + L 3 +...+ L n

При параллельном соединении (рис. 9) суммарная индуктивность
Для двух катушек, соединенных параллельно , суммарная индуктивность
При последовательном соединении двух катушек с взаимоиндукцией (расположенных соосно и на малом расстоянии друг от друга (рис. 8) суммарная индуктивность
где:

М - взаимная индуктивность, гн.
Для случая параллельного соединения двух катушек

Знак плюс ставится при одинаковом, а знак минус при встречном направлении магнитных полей.
Взаимная индуктивность определяется формулой
где буквой k обозначен коэффициент связи, который всегда меньше единицы, Определение коэффициента связи производится следующимобразом (рис. 10):
Индуктивность проводника относительно земли
где:

/ - длина проводника, см;
h - высота над землей, см;
г - радиус проводника, см;
l n - натуральный логарифм.

Индуктивность коаксиальною кабеля
где:

D - диаметр наружного провода, см;
d - диаметр внутреннею провода, см.

Индуктивность тороидальной катушки (рис. 11)

где:

ω - число витков;
μ - абсолютная магнитная проницаемость материала;
F- площадь поперечною сечения магнитопровода, см 2 ;
I - средняя длина магнитной линии, см.

Индуктивность катушки с прямоугольным сечением (рис. 12)

где:

h - высота, см;
b - ширина, см;
I - длина, см;
k - коэффициент, определяемый по графикам на рис. 13.

Любой проводник с током создает вокруг себя магнитное поле. Отношение магнитного потока этого поля к порождающему его току называется индуктивностью. Индуктивность прямого отрезка проводника невелика и составляет 1...2 мкГн на каждый метр длины в зависимости от диаметра провода (тонкие проводники имеют большую индуктивность). Более точные результаты дает формула

где - длина провода; d - его диаметр. Оба размера надо брать в метрах (под знаком логарифма допустимо в любых, но одинаковых единицах), индуктивность получится в микрогенри. Для облегчения расчетов напомним, что натуральный логарифм любого числа в 2,3 раза больше десятичного логарифма (который можно найти с помощью таблиц, логарифмической линейки или калькулятора), т. е. Inx = 2,3lgx.

Зачем мы дали эту формулу? Поясним примером.

Пусть выводы некоторого радиоэлемента имеют длину 4 см при диаметре 0,4 мм. Сосчитаем их индуктивность:

2,3lg100 = 4,6 и 0,2-0,04-3,6 = 0,03 (округляем).

Итак, индуктивность каждого вывода близка к 0,03 мкГн, а двух выводов - 0,06 мкГн. С емкостью всего 4,5 пФ (а емкость монтажа может быть и больше) такая индуктивность образует колебательный контур, настроенный на частоту 300 МГц, - вспомните формулу Томсона:

f = 1/2π√LC .

Вот почему на УКВ нельзя вести монтаж длинными проводами и оставлять длинные выводы деталей.

Чтобы увеличить индуктивность, проводник сворачивают в кольцо. Магнитный поток внутри кольца возрастает, и индуктивность становится примерно втрое больше:

L = 0,27πD(ln8D/d-2).

Здесь D - диаметр кольца, размерности те же. Дальнейшее увеличение индуктивности происходит при увеличении числа витков, при этом магнитные потоки отдельных витков не только складываются, но и воздействуют на все остальные витки. Поэтому индуктивность возрастает пропорционально квадрату числа витков. Если в катушке N витков, полученную для одного витка индуктивность надо умножить на N 2 .

Для однослойной цилиндрической катушки с длиной, намного большей диаметра D (рис. 23), индуктивность достаточно точно рассчитывается по формуле

строго выведенной для очень длинного соленоида или тора. Все размерности здесь в системе СИ (метры, Генри), μ0 = 4π·10-7 Гн/м - магнитная константа; S = πD2/4 - площадь поперечного сечения катушки; μ - эффективная магнитная проницаемость магнитопровода. Для незамкнутых магнитопроводов она значительно меньше проницаемости самого материала. Например, для стержня магнитной антенны из феррита марки 600НН (магнитная проницаемость 600) и едва достигает 150. Если магнитопровода нет, μ = 1.

Очень точные результаты эта формула дает для тороидальных катушек, причем соответствует длине окружности кольцевого магнитопровода, измеренной по его средней линии. Формула годится и для низкочастотных трансформаторов, намотанных на Ш-образном магнитопроводе (рис. 24).

В этом случае S = ab - площадь сечения магнитопровода, а - это средняя длина магнитной силовой линии, показанная на рисунке пунктиром. Для замкнутых магнитопроводов, собранных без зазора, как и для ферритовых колец, и берется равной магнитной проницаемости материала. Малый зазор незначительно снижает μ. Учесть его влияние можно, увеличив длину магнитной силовой линии на величину δμ, где δ - ширина зазора, μ - магнитная проницаемость материала сердечника.

Как видим, от диаметра провода индуктивность практически не зависит. У низкочастотных катушек диаметр провода выбирают исходя из допустимой плотности тока, для медных проводников 2...3 ампера на каждый мм2 сечения проводника. В других случаях, особенно у радиочастотных катушек, стремятся получить минимальное сопротивление проводника, чтобы увеличить добротность (отношение индуктивного сопротивления к активному).

С этой целью надо, казалось бы, увеличивать диаметр провода, но тогда увеличивается длина намотки, что снижает индуктивность, а при тесном, многослойном расположении витков наблюдается эффект "вытеснения" тока из обмотки, что увеличивает сопротивление. Эффект аналогичен вытеснению тока на высоких частотах в любых проводниках, в результате чего ток течет только в тонком скин-слое у поверхности проводника. Толщина скин-слоя уменьшается, а сопротивление провода растет пропорционально корню квадратному из частоты.

Таким образом, для получения нужных индуктивности и добротности совсем не обязательно выбирать самый толстый провод. Например, если однослойную катушку (см. рис. 23) намотать толстым проводом виток к витку или вдвое более тонким проводом, но с шагом, равным диаметру провода, индуктивность останется прежней и добротность почти не уменьшится. Добротность возрастает при увеличении вместе с диаметром провода всех размеров катушки, главным образом, ее диаметра.

Для получения максимальной добротности и индуктивности катушку выгоднее делать короткой, но большого диаметра, с отношением D/ порядка 2,5. Индуктивность таких катушек более точно рассчитывается по эмпирической (подобранной опытным путем) формуле

Где размеры берутся в сантиметрах, а индуктивность получается в микрогенри. Любопытно, что эта же формула применима для спиральной или корзиночной плоской катушки (рис. 25).

В качестве D берут средний диаметр:

D = (Dmax + Dmin)/2

а в качестве - ширину намотки,

= (Dmax - Dmin)/2.

Индуктивность многослойной катушки без сердечника (рис. 26) вычисляется по формуле

где размеры подставляются в сантиметрах, а индуктивность получается в микрогенри. При плотной рядовой намотке добротность не превосходит 30...50, "рыхлая" намотка (внавал, универсаль) дает большие значения добротности. Еще лучше "сотовая" намотка, теперь практически забытая. На частотах до 10 МГц добротность увеличивается при использовании литцендрата - провода, скрученного из многих тонких изолированных жилок. У литцендрата больше общая поверхность провода, по которой, собственно, и течет ток из-за скин-эффекта, а следовательно, меньше сопротивление на высокой частоте.

Подстроечник из магнитодиэлектрика увеличивает индуктивность вплоть до 2-3 раз, в зависимости от размеров подстроечника. Еще большее увеличение индуктивности дают замкнутые или частично замкнутые магнитопроводы, например, горшкообразные. В этом случае лучше пользоваться строгой формулой для соленоида или тора (см. выше). Добротность катушки на замкнутом магнитопроводе определяется не столько проводом, сколько потерями в материале сердечника.

В заключение главы приведем несколько полезных формул для подсчета активного сопротивления проводов. Погонное сопротивление (на метр длины) медного провода на постоянном токе и низких частотах (Ом/м) легко найти по формуле

где d - диаметр провода, мм. Толщина скин-слоя для меди (мм) примерно равна 1/15√f (МГц). Обратите внимание: уже на частоте 1 МГц ток проникает в провод на глубину всего 0,07 мм! В случае, когда диаметр провода больше толщины скин-слоя, сопротивление возрастает по сравнению с сопротивлением на постоянном токе. Погонное сопротивление провода на высокой частоте оценивают по формуле

R = √f/12d (мм).

К сожалению, эти формулы нельзя использовать для определения активного сопротивления катушек, поскольку из-за эффекта близости витков оно получается еще больше.

Настало время дать ответы на первые задачи, приведенные в предыдущих разделах. Задачка из введения ("Радио", 2002, № 9, с. 52): какова длительность единичных импульсов (по отношению к периоду) на выходе логического элемента (рис. 2), если он переключается при напряжении 2 В, а на вход подан синусоидальный сигнал с амплитудой 4 В?

Решать эту задачу проще и нагляднее графически - надо по возможности точнее нарисовать синусоиду амплитудой 4 В и провести прямую горизонтальную линию на уровне порога переключения элемента, т. е. 2 В (рис. 27).

Элемент будет переключаться в моменты времени, соответствующие точкам пересечения синусоиды с этой линией. Длительность получившихся импульсов (выделены утолщенными линиями) теперь можно измерить линейкой - она составит 1/3 периода.

По горизонтальной оси графика целесообразно отложить не время, а фазу колебания φ. Полный период составит 360°, а моменты переключения находятся из уравнения 4sinφ = 2 или sinφ =1/2 (оно приравнивает мгновенное значение напряжения порогу переключения). Решения уравнения: φ = 30°, 150° и т. д. Разность фаз между моментами переключения составляет 150 - 30 = 120°, длительность импульса по отношению к периоду составит 120/360 = 1/3. Таким образом, задачку можно решить и алгебраически, но легко запутаться в многозначном решении уравнения для φ, поэтому нарисовать график оказалось очень полезно. Если даже не стараться рисовать график аккуратно, по нему получим приближенную оценку, а из решения алгебраического уравнения - точный результат.

Теперь вторая задача, предложенная в конце первого раздела: Измерения батареи показали ЭДС 12 В и ток короткого замыкания 0,4 А. Какую взять лампочку, чтобы свет был как можно ярче? Определяем внутреннее сопротивление батареи:

r = E/lK3= 12/0,4 = 30 Ом.

Чтобы свет был максимально ярким, на лампочке фонаря должна выделяться максимальная мощность (не напряжение, и не ток, а именно мощность, преобразующаяся затем в тепло: Q = P·t). Это происходит при равенстве сопротивления нагрузки внутреннему сопротивлению источника: R = г. Из всех перечисленных лампочек лишь одна удовлетворяет этому условию - находим ее сопротивление по закону Ома: 6 В/0,2 А = 30 Ом. Она и окажется самой яркой. Заметьте также, что на ней выделится напряжение 6 В и будет протекать ток 0,2 А, т. е. лампа будет светить в рекомендуемом для нее режиме.

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото - схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.


Фото - конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото - маркировка

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.


Фото - принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.


Фото - соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле ε c = - dФ/dt = - L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = ε c .

Видео: расчет катушки индуктивности

Вычисление

Формула - формула колебательного контура

Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула - период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по X L = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула - индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото - зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром. Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров. Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.

Теория индуктивностей

Характеристики магнитного поля

Магнитное поле создается постоянными магнитами и проводниками, по которым протекает электрический ток. Для характеристики магнитного поля вводятся такие величины:
, характеризующая интенсивностъ магнитного поля в данной точке пространства. Напряженность магнитного поля, создаваемого током, определяется его величиной и формой проводника. Напряженность магнитного поля, в а/м внутри катушки. у которой длина намного больше диаметра, может быть определена по формуле

где I - ток (в а); w - число витков, l - длина катушки (в м).
- общее количество магнитных силовых линий, пронизывающих контур. Для вакуума и практически для воздуха магнитный поток в веберах - вб, определяется по формуле

где S — площадь контура в квадратных метрах.
- интенсивность результирующего магнитного поля в данном веществе измеряется в веберах на метр квадратный (вб/м2 )

Величина, показывающая, во сколько раз магнитная индукция в данном веществе больше или меньше на пряжеиности внешнего магнитного поля (ом*сек)/м

Магнитная проницаемость вакуума (магнитная постоянная) равна единице. Для воздуха μ приблизительно равна 1. У парамагнитных веществ (алюминий, платина) μ > 1, у диамагнитных (медь, висмут и др.) μ < 1, а у ферро магнитных (железо, никель, кобальт и некоторые сплавы) μ >>> 1. В соответствии с приведенными выше формулами для любого вещества можем написать:

Кроме практической системы единиц, пользуются абсолютной электромагнитной системой единиц. Соотношение между единицами этих систем следующее:

1 = 12,56*10-3 Э (эрстед);
1 вб = 108 мкс (максвелл);
1 вб/м2 = 104 гс (гаусс).

Индуктивность и взаимоиндуктивность

Индуктивность (коэффициент самоиндукции) численно равна э. д. с. самоиндукции (eL), возникающей в проводнике (контуре) при равномерном изменении тока в нем на 1 а в 1 сек.

Индуктивность, измеряется в следующих единицах:
1 гн = 1000 мгн;
1 мгн = 1000 мкгн;
1 мкгн = 1000 см.

Рис. 1

Коэффициент взаимоиндукции М численно равен э. д. с. взаимоиндукции, возникающей в одном контуре при равномерном изменении тока на 1 а в 1 сек. в другом контуре (рис. 1).

Коэффициент взаимоиндукции измеряется в тех же единицах, что и индуктивность. Связь через общий магнитный поток двух катушек индуктивностью L1 и L2 называется индуктивной связью, характеризуемой коэффициентом связи

Зная коэффициент связи, можно определить коэффициент рассеяния

Если катушки находятся на общем замкнутом ферромагнитном сердечнике достаточно большого сечения, то k приблизительно равно 1 , а ϭ приблизительно равна 0 .

Соединение индуктивностей

Общая индуктивность L нескольких последовательно или параллельно соединенных индуктивностей при отсутствии, а также при наличии индуктивной связи между ними определяется по формулам, приведенным в таблице №1.

Таблица № 1

Схема соединения Общая индуктивность

В формулах отмеченных значком * верхний знак алгебраического сложения, используется при согласованном включении индуктивностей, а нижний знак алгебраического сложения, используется при встречном включении индуктивностей.

Катушки с малой индуктивностью

Однослойные катушки

применяются на частотах выше 1500 кГц. Намотка может быть сплошная и с принудительным шагом. Однослойные катушки с принудительным шагом отличаются высокой добротностью (Q = 150 - 400) и стабильностью. Они применяются в основном в контурах КВ и УКВ. Высокостабильные катушки, применяемые в контурах гетеродинов на КВ и УКВ, наматываются при незначительном натяжении проводом, нагретым до 80—120°.
Для катушек с индуктивностью выше 15 - 20 мкГн применяется сплошная однослойная намотка. Целесообразность перехода на сплошную намотку определяется диаметром катушки. В таблице № 2, приведены ориентировочные значения индуктивности, при которых целесообразен переход на сплошную намотку:

Таблица № 2

Катушки со сплошной намоткой также отличаются высокой добротностью и широко используются в контурах на коротких, промежуточных и средних волнах, если требуется индуктивность не выше 200—500 мкГн. Целесообразность перехода на многослойную намотку определяется диаметром катушки. В таблице № 3, приведены ориентировочные значения индуктивности при заданных диаметрах, при которых целесообразен переход на многослойную намотку:

Таблица № 3

Индуктивность простой однослойной катушки может быть рассчитана по формуле (1 ):

где L - индуктивность (в мкГн), D - диаметр катушки (в см), I - длина намотки (в см), w - число витков.

При намотке однослойной катушки индуктивности с принудительным шагом, общая индуктивность (в мкГн ), рассчитывается по формуле (2 ):


где L - индуктивность катушки, найденная по формуле (1 ) т. е. без поправки на шаг намотки;
А и В - поправочные коэффициенты, определяемые по графикам рис. 2а и 2б;
D - диаметр (в см);
w — число витков катушки.




Рис. 2 Графики поправочных коэффициентов для расчета индуктивности однослойных катушек с принудительным шагом намотки
d - диаметр провода;
t - шаг намотки;

Многослойные катушки могут быть разделены на простые и сложные. Примерами простых намоток являются рядовая многослойная намотка и намотка внавал.

Несекцнонированные многослойные катушки с простыми намотками отличаются пониженной добротностью и стабильностью, большой собственной емкостью, требуют применения каркасов со щечками.

Широкое применение имеют сложные универсальные намотки. В радиолюбительской практике находит применение также сотовая намотка. Индуктивность многослойной катушки может быть рассчитана по формуле:


где L - индуктивность катушки (в мкГн), D - средний диаметр намотки (в см), l - длина намотки (в см), t - толщина катушки (в см), w - число витков.

где t - толщина катушки (в см), l - длина намотки (в мм), w - число витков. d 0 - диаметр провода с изоляцией (в мм), α - коэффициент неплотности намотки. Значения коэффициента неплотности α , для многослойной намотки, могут быть взяты из таблицы 4.

Таблица 4

Для намотки «внавал» α надо увеличить на 10% - 15%. Если фактическая толщина катушки отличается от принятой в начале расчета более чем на 10%, то следует задаться другими размерами катушки и повторить расчет.

Секционированные катушки индуктивности - рисунок 3, характеризуются достаточно высокой добротностью, пониженной собственной емкостью, меньшим наружным диаметром и допускают в небольших пределах регулировку индуктивности путем смещения секций.

Рис. 3

Они применяются как в качестве контурных в контурах длинных и средних волн, так и в качестве дросселей высокой частоты.
Каждая секция представляет собой обычную многослойную катушку с небольшим числом витков. Число секций n может быть от двух до восьми, иногда даже больше. Расчет секционированных катушек сводится к расчету индуктивности одной секции. Индуктивность секционированной катушки, состоящей из n секций,


где Lc - индуктивность секции, k - коэффициент связи между смежными секциями.
Коэффициент связи зависит от размеров секций и расстояния между ними. Эта зависимость изображена на графике - рисунок 4.


Рис. 4

Отношение b / D ср выбирается так, чтобы величина коэффициента связи была в пределах 0,25 - 0,4. Это получается при расстояниях b = 2 l . Расчет каждой секции производится обычным способом.

Корзиночная катушка , изображена на рисунке 5. Это плоскоспиральная намотка на основание в виде круга с нечетным числом радиальных прорезей. Через каждый разрез провод переходит с одной стороны круглого основания на другую.

Рис. 5

Индуктивность такой катушки в мкГн определяется по формуле:


где w - число витков, D 2 - внешний диаметр намотки (в см), D 1 - внутренний диаметр намотки (в см), k - поправочный коэффициент для корзиночных катушек, определяемый из таблицы 5.

Таблица 5. Поправочный коэффициентk для корзиночных катушек.

k

Наилучшим соотношением для корзиночных катушек является D 2 = 2 D 1

Торроидальные катушки индуктивности на немагнитном сердечнике - выполняются сплошной намоткой на кольцевом немагнитном сердечнике, со средним диаметром D , как правило, поперечное сечение кольца имеет форму окружности с диаметром d . Эскиз торроидальной катушки индуктивности на немагнитном сердечнике изображен на рисунке 6.

Рис. 6

Индуктивность такой катушки в мкГн определяется по следующей формуле:


где D - средний диаметр торроидального сердечника (в см.), w - количество витков катушки, d - диаметр витка (в см.)

Собственная емкость катушек индуктивности

Собственная емкость изменяет параметры катушки, понижает добротность и стабильность настройки контуров. В диапазонных контурах эта емкость уменьшает коэффициент перекрытия диапазона.
Величина собственной емкости определяется типом намотки и размерами катушки. Наименьшая собственная емкость (несколько пф) у однослойных катушек, намотанных с принудительным шагом. Многослойные катушки обладают большей емкостью, величина которой зависит от способа намотки. Так, емкость катушек с универсальной намоткой составляет 5—25 пф, а с рядовой многослойной намоткой может быть выше 50 пф.

Катушки с большой индуктивностью

В катушках с большой индуктивностью применяются сердечники из ферромагнитных материалов. Индуктивность катушки с замкнутым стальным сердечником, измеряется в генри (гн) и рассчитывается по формуле:

Где μ - магнитная проницаемость материала, Sc - сечение сердечника в квадратных сантиметрах см2, ω - число витков катушки, lc - средняя длина магнитного пути в см. Схематическое изображение Ш - образного магнитного сердечника, приведено на рисунке 7.

Рис. 7 Ш - образный магнитный сердечник

Следует помнить, что магнитная проницаемость материала зависит от переменной составляющей индукции в сердечнике и от величины постоянного подмагничивания, а также от частоты. Ниже приводится методика расчета катушек индуктивности, работающих при малых значениях переменной составляющей индукции, например, дросселей сглаживающих фильтров для выпрямителей. Для катушек индуктивности, работающих без постоянного подмагничивания, число витков определяется по формуле:

Где L - индуктивность катушки в гн, lc - средняя длина магнитного пути в см, μ н - начальная проницаемость магнитного материала, Sc - сечение сердечника в квадратных сантиметрах см2.

Для катушек индуктивности с постоянным подмагничиванием предварительно определяем ориентировочное значение действующей магнитной проницаемости, с учетом подмагничивания, по графикам для разных электротехнических сталей, приведенным на рис. 8, где I 0 - ток подмагничивания, L - индуктивность.

Рис. 8 Графики для ориентировочного определения
постоянном подмагничивании

Ориентировочное число витков для катушек индуктивности с постоянным подмагничиванием определяем по формуле (*) :

Где μ д - истинное значение магнитной проницаемости материала ферромагнитного сердечника. Истинное значение действующей магнитной проницаемости μ д определяется по кривым рисунка 9.

Рис. 9 Графики для определения истинного значения
действующей магнитной проницаемости при
постоянном подмагничивании

Постоянное подмагничивание aw o на 1 см длины магнитного пути для работы с графиками рисунка 4, можно определить по формуле:

где Io - ток подмагничивания в ма , l с - длина магнитного пути в см.
Далее определяется точное число витков катушки по приведенной выше формуле (*). Диаметр провода катушки в мм:

Где Io - ток подмагничивания в а .
Величина немагнитного зазора в сердечнике, изображенного на рисунке 1 высчитывается по формуле:

причем Z % определяется по кривым рисунка 10. Толщина немагнитной прокладки выбирается равной 0,5δз . Прокладки можно делать из любого листового изоляционного материала.

Рис. 10 Кривые для определения величины z%