Для чего нужны подшипники качения. - значительные потери на трение в период пуска и при несовершенной смазке. История возникновения подшипников

ПОДШИПНИКИ КАЧЕНИЯ

П л а н л е к ц и и

1. Общие сведения.

2. Материалы, применяемые для изготовления подшипников качения.

3. Виды разрушений и критерии работоспособности подшипников качения.

4. Расчет подшипников качения на долговечность.

5. Статическая грузоподъемность подшипников качения.

1. Общие сведения

Подшипники качения – это опоры вращающихся или качающихся деталей, использующие элементы качения (шарики или ролики) и работающие на основе трения качения.

Основные детали подшипников качения. Подшипники качения со-

стоят из следующих деталей (рис. 13.1): 1 – наружного кольца с диаметромD ;2 – внутреннего кольца с диаметром отверстияd и ширинойB ;3 – тел качения c диаметромD w (шариков или роликов), которые катятся по дорожкам качения колец;4 – сепаратора, отделяющего и удерживающего тела качения в собранном состоянии.

Основное применение имеет змейковый сепаратор, в подшипниках с высокой точностью вращения применяют массивные сепараторы (цельные или клепаные).

Классификация подшипников качения группирует последние по сле-

дующим признакам: по форме тел качения, по направлению воспринимаемой нагрузки, по числу рядов тел качения, по самоустанавливаемости, по радиальным габаритным размерам, по ширине одного и того же диаметра, по степени точности.

4 3


По форме тел качения различают:

шариковые подшипники (рис. 13.2,а ). Они наиболее быстроходные;роликовые подшипники имеют большую грузоподъемность. В зависи-

мости от формы роликов бывают:

с цилиндрическими короткими роликами (рис. 13.2, б ); цилиндрическими длинными роликами (рис. 13.2,в ); игольчатыми роликами (рис. 13.2,г ); бочкообразными роликами (рис. 13.2,д ); коническими роликами (рис. 13.2,е );

комбинированными роликами (рис. 13.2, ж ), с небольшой выпуклостью поверхности (7–30 мкм на сторону); витыми или пустотелыми роликами (рис. 13.2,з ).

По направлению воспринимаемой нагрузки изготавливают:

радиальные подшипники , предназначенные для восприятия радиальных сил; некоторые типы могут воспринимать и осевые силы.

На рис. 13.3 приведены схемы шарикового (рис. 13.3, а ), роликового (рис. 13.3,б ) и игольчатого (рис. 13.3,в ) радиальных подшипников;

упорные подшипники (рис. 13.4), предназначенные для восприятия осевых сил;

радиально-упорные подшипники – шарикоподшипник (рис. 13.5,а ) и ро-

ликоподшипник (рис. 13.5, б ). Предназначены для восприятия комбинированной (с учетом угла наклона осей тел качения α) радиальной и осевой нагрузки. Подшипники регулируемых типов без осевой силы работать не могут; упорно-радиальные подшипники – для восприятия осевых и небольших

радиальных нагрузок.

По числу рядов тел качения выпускают:

однорядные подшипники (рис. 13.6); двухрядные подшипники(рис. 13.7); многорядные подшипники.

a б в г д е

По признаку самоустанавливаемости бывают:

несамоустанавливающиеся подшипники (рис. 13.8); самоустанавливающиеся подшипники(рис. 13.9). Например, сферичес-

кие самоустанавливаются при неточном угловом расположении осей вала и отверстия в корпусе.

По радиальным габаритным размерам производят подшипники качения:

сверхлегкие (две серии); особо легкие(две серии) (рис. 13.10, а);

легкие и легкие широкие (рис. 13.10, б, в); средние и средние широкие(рис. 13.10, г, д); тяжелые(рис. 13.10, е); особо тяжелые.

По ширине одного и того же диаметра подшипники бывают:

узкие; нормальные; широкие; особо широкие.

По степени точности ГОСТ 520–89 предусматривает пять классов точности (в порядке возрастания):

нормальной точности – 0; повышенной– 6; высокой– 5; прецизионной– 4; сверхпрецизионной– 2.

Подшипники качения могут выполняться с коническими посадочными отверстиями (угол конуса 1: 12).

Обозначение подшипников качения. Подшипники имеют условное обозначение, состоящее из цифр и букв (табл. 13.1).

Пятая или пятая и шестая справа цифры обозначают конструктивные разновидности подшипников: угол контакта шариков в радиально-упорных подшипниках; наличие защитных шайб, канавок под упорное кольцо и др.

Перед основными знаками условного обозначения через дефис могут ставиться: класс точности (нормальный класс точности (0) не указывается), радиальный зазор в подшипниках и величина момента трения (в этом случае нормальный класс точности указывается).

Справа от основного обозначения указываются дополнительные обозначения (буквы и цифры), учитывающие: отличия по материалам деталей, конструкции, покрытиям, зазорам, чистоте обработки; специальные требования по шуму (вибрации); обозначение сортов закладываемой смазки, специального отпуска деталей подшипников и др.

Порядковый номер цифры справа

Первая и вторая

Четвертая

Пятая и шестая

Таблица 13.1

Обозначение подшипников качения

Значение цифр

Внутренний диаметр подшипника d

Для диаметров до 9 мм цифры указывают фактический размер.

Для диаметров 10 мм – 00; 12 мм – 01; 15 мм – 02; 17 мм – 03.

Для диаметров 20–495 мм цифры соответствуют внутреннему диаметру (с 04 до 99), деленному на 5.

Для диаметров более 500 мм и нестандартных размеров указывают фактический размер через косую черту после третьей цифры справа

Серия подшипника по наружному диаметру D

Сверхлегкая

Легкая широкая

Средняя широкая

Особо тяжелая

Тип подшипника

Шариковый радиальный

Шариковый радиальный сферический

Роликовый радиальный с короткими цилиндрическими роликами

Роликовый радиальный со сферическими роликами

Роликовый радиальный с длинными цилиндрическими или игольчатыми роликами

Роликовый радиальный с витыми роликами

Шариковый радиально-упорный

Роликовый конический

Шариковый упорный, шариковый упорно-радиальный

Роликовый упорный, роликовый упорно-радиальный

Конструктивные особенности подшипника

Серия подшипников по ширине и высоте

Нормальная

Особо широкие

Назначение подшипников качения. Шарикоподшипники наиболее быстроходные и дешевле роликоподшипников.

Шариковый радиальный однорядный подшипник (рис. 13.11, а ) предназначен для восприятия радиальных нагрузок, но может воспринимать и двухсторонние осевые нагрузки 0,7 от неиспользованной радиальной. Удовлетворительно работает при перекосе колец до 15" .


Подшипник шариковый радиальный сферический двухрядный (рис. 13.11, б ) имеет два ряда шариков, дорожка качения наружного кольца выполнена по сферической поверхности и допускает перекос колец до 3–4º, благодаря чему возможны большие деформации валов и несоосность отверстий в опорах (возможность исполнения отдельно). Подшипник предназначен для восприятия радиальных нагрузок, но может воспринимать и двухсторонние осевые нагрузки до 0,2 от неиспользованной радиальной. При скоростях более 10 м/с рекомендуется применять массивный сепаратор.

Шариковый радиально-упорный однорядный подшипник (рис. 13.11,в ) воспринимает и радиальную, и одностороннюю осевую нагрузку. По конструкции один из бортов наружного кольца срезан, что дает возможность устанавливать больше шариков того же диаметра, повышает грузоподъемность этих подшипников до 30 %. Чем больше осевое усилие, тем с большим углом наклона осей шариков применяются подшипники(углы контакта – 12, 26 и 36°).

Шарикоподшипник радиально-упорный двухрядный (рис. 13.11,г ) воспринимает значительные радиальные, знакопеременные осевые и комбинированные нагрузки при высоких требованиях к жесткости опор вала.

Шариковый подшипник с четырехточечным контактом предназначен для работы при значительных радиальных и двухсторонних осевых нагрузках (равных неиспользованной радиальной). Радиальная грузоподъемность в 1,5 раза больше, чем у обычного однорядного шарикоподшипника.

Шариковые упорный одинарный (рис. 13.12, а ) и двойной (рис. 13.12,б ) подшипники воспринимают только осевые нагрузки, а двойной – знакопеременные. Удовлетворительно работают при скоростях до 5–10 м/с.

Роликоподшипники работают при меньших скоростях, но их грузоподъемность в 1,5–1,7 раза выше, чем у шарикоподшипников.

Роликовый радиальный подшипник с короткими цилиндрическими роликами (рис. 13.13, а

Роликовый радиально-упорный с коническими роликами подшипник (рис. 13.13,в ) удобен в сборке, воспринимает радиальную и одностороннюю осевую нагрузку (угол контакта – 9–17°) при скоростях до 15 м/с. Подшипники обладают большой чувствительностью к несоосности и относительному перекосу осей вала и корпуса.

Игольчатый роликоподшипник (рис. 12.14) воспринимает только радиальные нагрузки, при стесненных радиальных габаритах часто устанавливается без одного из колец. Посадочные поверхности вала и корпуса под иглы подвергают закалке до высокой твердости, шлифуют и полируют. Удовлетворительно работает при скоростях до 5 м/с.

Роликовый подшипник с витыми роликами хорошо работает при ударных нагрузках. Соседние ролики обычно имеют навивку противоположного направления во избежание осевого смещения колец.

2. Материалы, применяемые для изготовления подшипников качения

Кольца и тела качения подшипников изготовляют из шарикоподшипниковых высокоуглеродистых хромистых сталей марок ШХ15, ШХ15СГ, ШХ20СГ, а также из цементуемых легированных сталей марок 18ХГТ и 20Х2Н4А. Кольца и тела качения подшипников, работающие при температуре до 100 °С, имеют твердость 58–65 НRC. Для работы в условиях высоких температур или агрессивных сред применяют специальные теплостойкие или коррозионно-стойкие стали 9Х18, ЭИ347Ш с твердостью 63–67 НRC. При требовании обеспечить немагнитность подшипников используют бериллевую бронзу.

Сепараторы большинства подшипников изготовляют из мягкой углеродистой стали методом штамповки. Для высокоскоростных подшипников применяют массивные сепараторы из латуни, антифрикционных бронз, фторопласта, текстолита.

В условиях ударных нагрузок и при высоких требованиях к бесшумности подшипников качения тела качения изготавливают из пластмасс, при этом резко снижаются требования к твердости колец.

3. Виды разрушений и критерии работоспособности подшипников качения

Характер и причины отказов подшипников качения:

1. Усталостное выкрашивание рабочих поверхностей колец и тел качения в виде раковин или отслаивания под действием переменных контактных напряжений. Его обычно наблюдают после длительной работы. Сопровождается повышенным шумом и вибрациями.

2. Смятие рабочих поверхностей дорожек и тел качения (образование лунок и вмятин) вследствие местных пластических деформаций под действием ударных или значительных статических нагрузок.

3. Абразивное изнашивание вследствие плохой защиты подшипника от попадания абразивных частиц.

4. Разрушение сепараторов от действия центробежных сил и воздействия на сепаратор разноразмерных тел качения.

5. Разрушение колец и тел качения из-за перекосов колец или действия больших динамических нагрузок.

Основными критериями работоспособности являются:

долговечность по динамической грузоподъемности (рассчитывают подшипники с частотой вращения кольца n ≥ 1 об/мин);

статическая грузоподъемность (рассчитывают невращающиеся и медленно вращающиеся подшипники с частотой вращения кольца n ≤ 1 об/мин).

4. Расчет подшипников качения на долговечность

Расчет на долговечность подшипников основан на динамической грузоподъемности С подшипника, представляющей постоянную эквивалентную нагрузку, которую подшипник может выдержать в течение 106 оборотов (одного миллиона оборотов) при частоте вращения более 1 об/мин.

Расчетная долговечность подшипников (срок службы) при 90%-ном уровне надежности, млн. об.:

L 0,9

PE

где С динамическая грузоподъемность, Н;P E эквивалентная (приведенная) нагрузка, Н;m показатель степени; для шариковых подшипниковm = 3, для роликовых подшипниковm = 10/3.

E определяется по формуле

P E = (х vF R +yF A )K б K t ,

Подшипники качения обычно состоят (рис. 35): из двух колец наружного 1 и внутреннего 2 , тел качения 3 (шарики или ролики) и сепаратора 4 (от лат. separator – отделитель), разделяющего тела качения друг от друга.

Внутреннее кольцо насаживается на вал или ось, наружное устанавливается в корпусе опорного узла машины. В наиболее часто встречающихся конструкциях внутреннее кольцо является подвижным, а наружное – неподвижным.

Стандартные подшипники по основным признакам разделяются на следующие типы. По форме тел качения – на шариковые (рис. 36 а, б, в, е) и роликовые (рис. 36 г, д, ж, з); по воспринимаемы нагрузкам – на радиальные (рис. 36 а, б, г, ж, з,), радиально-упорные (рис. 36 в, д), упорные (рис. 36 е) и упорно-радиальные; по важнейшему конструктивному признаку – на самоустанавливающиеся (сферические) (рис. 36 б) и несамоустанавливающиеся (остальные); по числу рядов тел качения – на однорядные (рис. 36 а. в, г, д. е, ж, з) , двухрядные (рис. 36 б) и четырёхрядные.

Подшипники одного и того же диаметра отверстия подразделяются по габаритным размерам (наружного диаметра и ширины) на серии: сверхлёгкую, особолёгкую, лёгкую, лёгкую широкую, среднюю, среднюю широкую и тяжёлую (рис. 37)




Радиальные шариковые подшипники предназначены для восприятия главным образом радиальных нагрузок. Однако, они, кроме радиальной нагрузки, могут передавать осевую нагрузку в пределах 70% от неиспользованной радиальной нагрузкой. При использовании этих подшипников предъявляются менее высокие требования к соосности опор и жёсткости валов. Они дешевле подшипников других типов, допускают более простой монтаж и демонтаж. Поэтому их наиболее часто используют в различных машинах и механизмах.

Роликовые подшипники обладают большей грузоподъёмностью, чем шариковые. Однако роликовые подшипники с цилиндрическими роликами наиболее распространённых конструкций не могут воспринимать осевые нагрузки, а конические роликоподшипники менее быстроходны.

Радиально-упорные подшипники различают по углу контакта α (рис. 36 б). С увеличением угла контакта радиально-упорные подшипники могут воспринимать более тяжёлые осевые нагрузки, однако быстроходность подшипников при этом снижается.

Самоустанавливающиеся подшипники (рис. 36 б) применяют в случае повышенной не соосности опор валов (до2º…3º), а также при повышенной податливости вала.

Материалом шариков и роликов с диаметром до 20 мм, а также колец подшипников с толщиной стенки до 12 мм обычно является хромистая высокоуглеродистая сталь марки ШХ15 . Предел текучести при испытании на растяжение закалённых образцов из этой стали σ Т = 2200…2600 МПа. Для изготовления роликов и колец бóльших размеров используют стали с повышенным уровнем легирования – ШХ15СГ и ШХ20СГ , так как более высокое содержание в них кремния и марганца понижает скорость охлаждения металла и позволяет закалять детали на большую глубину. Кольца подшипников могут быть выполнены и из других сталей (например, предназначенных для поверхностного упрочнения).

Сепараторы массовых подшипников изготовляют штамповкой из мягкой углеродистой стали; сепараторы высокоскоростных подшипников выполняют из бронз, латуни, дуралюмина, текстолита и других материалов. Если подшипники должны обладать особыми свойствами (антикоррозионными, немагнитностью и пр.), то их детали изготовляют из соответствующих материалов.

Подшипник уже довольно давно используется в качестве сборочного узла любого механизма. Сложно представить без него машину или агрегат. Служит он для опоры или упора вала, для поддержания заданной жесткости с минимальной сопротивляемостью при трении.

Особо распространены два типа подшипника: качения и скольжения.

Самый широко используемый тип. Состоит он из следующих деталей:

  • Внутреннее кольцо.
  • Сепаратор (обойма).
  • Тела качения.
  • Внешнее кольцо.
  • Защитная крышка (применяется не всегда).

Такие подшипники применяются в оборудовании всех отраслей и назначений. Притом данный тип очень разнообразен. Тела качения бывают: сферические, роликовые, бочкообразные, игольчатые. В качестве материала для тел преимущественно используется сталь. В особо агрессивных средах применяют стеклянные тела качения.



На внутреннем кольце по внешней стороне протачивается желобок . Так же делают желоб по внутренней стороне внешнего кольца. Эти канавки являются дорожками для тел качения. Таким образом, шары вращаются точечно касаясь дна желобка и его стенок. Роликовые тела при вращении касаются всей плоскости канавок.

Сепаратор, как правило, состоит из двух спаянных между собой половинок. Его роль – создавать направление для движения тел и сохранять постоянную одинаковую дистанцию между ними. В некоторых случаях применяют подшипник качения без сепаратора, что позволяет увеличить нагрузку на узел, однако, скорость вращения не может быть большой при такой конструкции.



Подшипник качения по воспринимаемой нагрузке классифицируется на упорный, радиальный, радиально-упорный. На радиальные нагрузка распределяется перпендикулярно оси вала. Нагрузка вдоль вала недопустима.

Упорные принимают нагрузку параллельную оси. Запрещена нагрузка поперечная валу.

Радиально упорные. Могут принимать нагрузку как параллельно, так и перпендикулярно оси вала.

В целях уменьшения габаритов в некоторых случаях не используется внутреннее кольцо. При таком варианте эксплуатации на валу, неподвижном или активном, вытачивается канавка и сепаратор с внешним кольцом надевается непосредственно на ось или вал механизма.

В зависимости от количества рядов тел качения подшипник может быть однорядным, двухрядным и многорядным. Двухрядные и многорядные преимущественно используются как упорные или радиально-упорные и способны выдерживать значительно большие нагрузки, нежели однорядные.

Подшипники с защитной крышкой более долговечны и требуют меньшего внимания на обслуживание. Открытые же могут быстро выйти из строя при недостаточной или неправильной смазке и попадания инородных предметов.

Для подшипников качения применяют различные виды смазок: жидкие (различные масла), пластичные (солидол), твердые (графитовая смазка). Иногда подшипники работают без смазки, однако, скорость вращения тел качения не должна быть высокой, а нагрузка большой. В противном случае подшипник быстро нагревается и выходит из строя.

В данном типе подшипника трение возникает при скольжении состыкованных плоскостей вала и втулки.

Подшипник скольжения состоит из следующих элементов:

  • Корпус (цельный или разборный).
  • Вкладыш или втулка (изготовленные из антифрикционного материала).
  • Смазывающее устройство.

Корпус для такого типа чаще всего массивный, изготавливается из разных металлов и может быть цельный или разъемный. Корпус оснащён одним или несколькими масляными клапанами. Клапан служит для подвода смазки на рабочую плоскость вкладыша или втулки. Также при смазке под давлением, при помощи специальных масляных станций, имеется отвод для отработанного масла, которое потом попадает на станцию и вновь на подшипник. Таким образом, смазка является циркулирующей.

Вкладыш чаще изготавливают из антифрикционных металлов, таких как: бронза и чугун. Могут применяться стальные вкладыши с нанесенным слоем баббита.

Принцип работы достаточно прост. В корпус монтируется вкладыш или втулка. Затем конструкция крепится на цапфу вала. Между цапфой и вкладышем должен быть небольшой промежуток для смазки. Во время движения вала смазочный материал отделяет ось от вкладыша, тем самым уменьшая силу трения. Однако при пуске вал некоторое время касается стенок подшипника, для этого и нужен слой антифрикционного металла.

Подшипник скольжения классифицируется на радиальный, упорный, радиально упорный .



В качестве смазочного материала преимущественно применяют масла. Также применяются пластичные, твердые и даже газообразные смазки.

Разница между подшипниками скольжения и качения

Подшипник скольжения имеет ряд преимуществ, которые отличают его от подшипника качения:

  • Имеет разъемное исполнение. Это огромный плюс для использования в двигателе внутреннего сгорания. На коленчатый вал надеть подшипник качения не представляется возможным. И поэтому применяют подшипник скольжения.
  • Экономичный вариант для применения на больших по диаметру валах.
  • Способны работать в воде.
  • При ремонте не возникает необходимость демонтировать остальные детали.
  • В отличие от шарикоподшипников могут воспринимать большие вибрационные, а также ударные нагрузки.
  • Размеры подшипников радиального типа относительно небольшие.
  • Имеется возможность регулирования зазора между валом и вкладышем.
  • Просты в тихоходных машинах.
  • Надежны в приводах с высокой скоростью.
  • Бесшумная работа.

Однако и у подшипников качения есть свои преимущества :

  • Материалы для изготовления дешевле.
  • Не требуют постоянного надзора за смазкой.
  • Нет увеличенного трения при пуске.
  • Меньший расход смазочных материалов.
  • Меньше сила трения.
  • Размер подшипников упорного типа меньше.

У каждого вида подшипника есть свои преимущества и слабые стороны, что позволяет применять при отдельный вид при определённых условиях. Из общего же только предназначение – опора вала и создание минимального трения при работе.

Сегодня подшипники используются во всех механизмах, связанных с вращающимися компонентами. Без подшипников не обходится вращение деталей в часах, валов в двигателе внутреннего сгорания, турбин в шахтах или аттракционов с названием «колесо обозрения».

Фактически подшипник представляет собой кольцо, надетое на предмет цилиндрической формы. Подшипники бывают радиальными (например, такие используются, чтобы удерживать колесо автомобиля) и упорными (используются в офисных креслах, чтобы они могли вращаться вокруг своей оси). Любой подшипник выполняет три задачи:
  1. Удерживает вал или ось в нужном положении;
  2. Максимально снижает сопротивление, возникающее при соприкосновении вращающегося вала, с фиксирующей его положение конструкцией;
  3. Передаёт нагрузку с вращающейся части на другие элементы конструкции.
Существует большое количество видов подшипников. По разным классификациям выделяют от семи до десяти. Однако самыми популярными среди них остаются подшипники качения и подшипники скольжения . Разница между ними заключается в том, как они устроены и где применяются. Ниже будет дан ответ на вопрос: в чем же отличие подшипника качения от подшипника скольжения?

Подшипники скольжения.

Они представляют собой кольца, внутрь которых помещается втулка или вал. С помощью кольца вал фиксируется нужным образом в пространстве, после чего может начинать вращаться. Подшипники скольжения бывают двух типов: неразъемные и разъемные. Первые представляют собой полноценное кольцо, в которое втулка просто вставляется. Вторые разделяются на две части: в первой фиксируется вал, после чего устанавливается вторая половина подшипника. Такой способ удобнее в эксплуатации, поэтому чаще используют именно раздельные подшипники скольжения.

В процессе вращения вал непосредственно соприкасается с поверхностью подшипника. Из-за этого обе составные пары «подшипник-вал» начинают тереться друг о друга. В результате этого процесса обе детали быстро изнашиваются, а скорость вращения вала существенно сокращается.

Для того, чтобы этого избежать используются различные смазки.
Смесь, препятствующая трению, является важнейшим условием долговечной работы подшипника. Кроме повышения срока службы вала и подшипника, смазка позволяет сократить силу трения, обеспечивает теплоотводение и препятствует условиям внешней среды оказывать влияние на детали. Смазки бывают трёх видов:
  • жидкие,
  • твёрдые
  • газообразные.
В подавляющем большинстве подшипников скольжения применяются жидкие смазки. Твёрдые (на основе графита) используются, например, в скользящих подшипниках удерживающих колёсный вал в поезде – под большими нагрузками жидкие смазки оттуда моментально выдавливает. Газ в качестве «смазки» используется на высокоточных производствах с особыми условиями эксплуатации деталей. Задача газообразной смеси предотвратить непосредственное соприкосновение вала с поверхностью подшипника.

Достоинства подшипников скольжения

  1. Низкая вероятность поломки;
  2. Возможность выдерживать высокие ударные и вибрационные нагрузки;
  3. Они меньшего радиального размера, чем аналогичные подшипники качения;
  4. При использовании разъёмных подшипников скольжения их можно демонтировать без разборки других деталей конструкции;
  5. Низкий уровень шума при работе;
  6. Могут работать в воде
  7. Допускается наличие зазора между поверхностью подшипника и валом. Это позволяет использовать даже значительно изношенные детали без потери эффективности;
  8. Сохраняют высокий КПД даже при работе крупных валов.

Недостатки подшипников скольжения

  1. Всегда требуют наличия смазки при работе;
  2. Быстрый износ из-за трения при работе на некачественной смазке;
  3. Большие затраты на смазочные материалы;
  4. Необходимость постоянного контроля над условиями работы подшипника;
  5. Невысокий КПД, по сравнению с подшипниками качения
  6. Разная скорость износа подшипника и вала;
  7. Малая долговечность;
  8. Для изготовления подшипников скольжения используются более дорогие материалы, чем для подшипников качения.

Подшипники качения.

Они устроены сложнее, нежели подшипники скольжения. Во-первых, они представляют собой не одно, а два кольца. Причем диаметр первого больше, чем диаметр второго, настолько, чтобы между ними можно было поместить другие компоненты. Для этого на внешней стороне маленького кольца и внутренней стороне большого кольца вырезают специальные желоба. Обычно между кольцами помещают: шарики, иглы, бочонки или другие по форме тела качения. В результате получается конструкция из нескольких составляющих. Вал вставляется внутрь малого кольца. При вращении он воздействует на первое кольцо, которое вследствие этого раскручивается, увлекая за собой тела качения расположенные между первым и вторым кольцом. Большое кольцо при этом не крутиться, а находится в статичном положении. Из-за наличия тел качения между первым и вторым кольцами многократно уменьшается трение между деталями.


Подшипники качения бывают двух типов: с наличием сепаратора и без него. Сепаратор представляет собой широкое кольцо с отверстиями на одинаковом расстоянии. В эти отверстия помещаются тела качения. Это позволяет установить их на одинаковом расстоянии и увеличить эффективность подшипника при сохранении объема используемых материалов. Большинство подшипников создаются с учетом наличия сепараторов. Однако имеются подшипники качения, изготовленные и без него. В таких подшипниках помещается максимальное количество тел качения, поэтому между ними не требуется расстояние. Большое количество тел качения позволяет увеличить грузоподъёмность подшипника.

Однако лимит скорости вращения вала в бессепараторных подшипниках намного меньше, чем в подшипниках с наличием сепаратора.
Кроме этого, выделяют закрытые и открытые подшипники качения. Первые обладают специальными протекторами, которые защищают элементы подшипника от всех условий внешней среды. В связи с этим они обходятся без дополнительного обслуживания и замены смазки. Подшипники качения открытого типа – более чувствительны к окружающему пространству. В них нередко попадают инородные тела, что приводит к разрушению подшипника.


Основным свойством подшипников качения является низкое трение при соприкосновении поверхности вала с поверхностью подшипника. Из-за тел качения не происходит большой затраты энергии на сопротивление кольца и вала. В связи с этим и резко уменьшается износ и значительно увеличивается коэффициент полезного действия, по сравнению с подшипниками скольжения.

Достоинства подшипников качения

  1. Возможность использования в механизмах с высокой скоростью вращения вала;
  2. Способность удерживать вал при больших ударных и вибрационных нагрузках;
  3. Бесшумность работы;
  4. Маленькие осевые размеры.
  5. Нет необходимости замены смазки;
  6. Возможность использования при высоких температурах.

Недостатки подшипников качения

  1. Высокая стоимость;
  2. Трудоёмкий процесс изготовления;
  3. Большой радиус детали;
  4. Возможность использования только в сухих условиях;
  5. Не используются с высоконагруженными валами;
  6. Меньшая надежность по сравнению с подшипниками скольжения.
Несколько видео

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ДИЗАЙНА И ТЕХНОЛОГИИ

КАФЕДРА ПРИКЛАДНОЙ МЕХАНИКИ

Е.В. ФИЛИППОВА

ПОДШИПНИКИ

СКОЛЬЖЕНИЯ И КАЧЕНИЯ

Методические указания к лабораторной работе

Утверждено в качестве методического пособия

редакционно-издательским советом МГУДТ

МОСКВА

МГУДТ

Куратор РИС Андреенков Е.В.

Работа рассмотрена на заседании кафедры прикладной механики и рекомендована к печати

Зав. кафедрой: к.т.н., профессор Андреенков Е.В.

Рецензент: к.т.н., доцент Борисенков Б.И.

Ф 53 Филиппова Е.В. Методические указания к лабораторной работе по дисциплине «Прикладная механика». Тема «Подшипники скольжения и качения»/ Филиппова Е.В. – М.: РИО МГУДТ, 2012- 15 стр.

В методических указаниях рассматривается методика проведения лабораторной работы по изучению конструкции и методов расчета подшипников скольжения и качения. Используются различные типы подшипников, измерительные инструменты и справочная научно-техническая литература.

Предназначены для бакалавров по всем направлениям МГУДТ.

© Московский государственный

университет дизайна и технологии, 2012

Цель работы: изучение конструкции и определение нагрузочной способности подшипников скольжения и качения.

Подшипники являются опорами валов и вращающихся осей. Они воспринимают нагрузки, приложенные к валу или оси, и передают их на корпус машины. Качество подшипников в значительной степени определяет надежность и долговечность машины.

Подшипники классифицируются по виду трения и воспринимаемой нагрузке. По виду трения различают: подшипники скольжения, у которых опорный участок вала (цапфа) скользит по поверхности подшипника, и подшипники качения, у которых трение скольжения заменяют трением качения посредством установки шариков или роликов между опорными поверхностями подшипника и вала. По воспринимаемой нагрузке различают подшипники: радиальные (воспринимают радиальные нагрузки), упорные (воспринимают осевые нагрузки), радиально-упорные (воспринимают радиальные и осевые нагрузки). Все типы подшипников широко распространены.

Подшипники скольжения

Область применения подшипников скольжения в современном машиностроении сократилось в связи с распространением подшипников качения. Однако значение подшипников скольжения в современной технике не снизилось. Они используются в таких конструкциях, где применение подшипников качения затруднено или недопустимо по конструктивным соображениям (вибрационные и ударные нагрузки, разъемные подшипники), а также из-за отсутствия стандартных подшипников (миниатюрные и крупные валы диаметром свыше 1 м и т.д.).

Достоинства подшипников скольжения:

    надежно работают в высокоскоростных приводах;

    способны воспринимать большие ударные и вибрационные нагрузки;

    бесшумны в работе;

    имеют небольшие радиальные размеры;

    просты по конструкции, в изготовлении и ремонте;

    могут использоваться в агрессивных средах и воде.

К недостаткам подшипников скольжения можно отнести:

    высокие требования и большой расход смазки;

    склонность к перегреву;

    сравнительно большие осевые размеры;

    отсутствие стандартов;

    применение дефицитных металлов.

Конструкции подшипников скольжения весьма разнообразны. Во многом они зависят от конструкции машины, в которой устанавливаются. Основным элементом подшипника является вкладыш (1) с тонким слоем антифрикционного материала на опорной поверхности. Вкладыш устанавливают в специальном корпусе подшипника (2).

Подшипник может не иметь специального корпуса, тогда его размещают непосредственно в станине или раме машины.

Корпус и вкладыш могут быть неразъемными или разъемными. Разъемный подшипник позволяет легко укладывать вал и проводить ремонт путем повторных расточек вкладыша. Неразъемные подшипники дешевле.

Основным показателем работоспособности подшипника является трение. Оно определяет износ и нагрев подшипника, а также его к.п.д. В подшипниках скольжения может быть полусухое, полужидкостное и жидкостное трение, переходящее последовательно одно в другое по мере возрастания угловой скорости вала. Большинство подшипников скольжения работают в условиях полужидкостного трения, а в период пуска и останова – в условиях полусухого и граничного трения. Для уменьшения трения и износа подшипники смазывают. Смазка должна быть маслянистой и вязкой. Смазочные материалы могут быть жидкие, консистентные, твердые и газообразные в зависимости от степени нагруженности подшипников, условий производства и угловой скорости вала.

Работа трения нагревает подшипник и цапфу. С повышением температуры понижается вязкость смазки и увеличивается вероятность заедания цапфы в подшипнике, что в конечном результате приводит к выплавлению вкладыша. Перегрев подшипника является основной причиной его разрушения.

Практический расчет подшипников скольжения, работающих при полужидкостном трении

К таким подшипникам относятся подшипники грубых тихоходных механизмов, машин с частыми пусками и остановами, неустановившимся режимом нагрузки, плохими условиями подвода смазки и т.п. Эти подшипники рассчитывают:

    по условному давлению – подшипники тихоходные, работающие кратковременно с перерывами Р ≤ [ Р ] н/мм 2 , Р= F r / d

    по произведению давления на скорость – подшипники средней быстроходности: Р V ≤ [ Р V ] , где

F r – радиальная – диаметр цапфы (вала) (мм), – длина подшипника (мм), V – окружная скорость цапфы (м/с)