Некоторые особенности обмоток дросселей и трансформаторов для преобразователей. Дроссель – это необходимый элемент цепи

Дроссели переменного тока широко применяются в различных электрических установках и в цепях радиоустройств, например в балластных, токоограничивающих, в антенных контурах мощных генераторов, в полосовых фильтрах мощных усилителей и т. д. Широкое применение в последнее время дроссели нашли моделирующей технике.

Дроссели изготовляют для включения в электрические цепи с мощностью от нескольких вольтампер до с индуктивностью от 0,01 до на токи от до 10 а. Изоляция дросселей рассчитана на различные значения допустимого рабочего напряжения - до 2500 в у низковольтных и выше у высоковольтных. В дальнейшем рассматриваются только низковольтные однофазные дроссели.

Дроссель представляет собой в основном обтекаемую переменным током катушку с ферромагнитным сердечником. Последний резко увеличивает магнитное поле. При одинаковых параметрах дроссель с ферромагнитным сердечником несравненно компактнее, чем катушка без сердечника. Подчеркнем, что при прочих равных условиях индуктивное сопротивление дросселя тем больше, чем лучше магнитные свойства ферромагнетика, т. е. чем больше его магнитная проницаемость.

Все характеристики дросселя обусловливаются свойствами его ферромагнитного сердечника.

Вольтамперные характеристики при этом могут быть близкими к линейным, а могут быть и существенно нелинейными.

Свойства нелинейного дросселя отличны от свойств линейного дросселя. Так, при заданной частоте сопротивление нелинейного дросселя - величина непостоянная, зависящая от величины приложенного напряжения. Обычно индуктивное сопротивление дросселя значительно меньше при насыщенном, чем при ненасыщенном сердечнике. Форма кривой тока, протекающего по обмотке нелинейного дросселя, зависит от формы кривой приложенного напряжения и от его величины. Если напряжение синусоидально и сердечник ненасыщен, то форма кривой тока практически близка к синусоидальной, при насыщенном замкнутом сердечнике ток несинусоидален.

Нелинейность дросселя в ряде случаев - фактор нежелательный. В то же время она определяет применение дросселя в некоторых устройствах современной автоматики и радиоэлектроники.

Некоторая линеаризация вольтамперной характеристики дросселя может быть получена, если его магнитопровод сделать с немагнитным зазором. Дроссель в таком случае становится ограниченно линейным элементом, индуктивное сопротивление которого постоянно при изменении в определенных пределах тока дросселя.

Применение немагнитного зазора целесообразно и для получения в дросселе большей магнитной энергии. Магнитопроводы дросселей радиоэлектронной аппаратуры эти зазоры обычно имеют. Немагнитный зазор вносит ряд особенностей в работу дросселя. В частности, при нем наблюдается и явление «уширения», или «выпучивания», магнитного потока . Следует указать, что даже большой зазор в магнитопроводе не делает дроссель полностью линейным элементом, так как электрическая энергия, расходуемая на покрытие потерь в сердечнике, не пропорциональна квадрату тока. При проектировании дросселей, близких к линейным, неизбежно приходится считаться с нелинейностью ферромагнитного сердечника.

Принципиально следует различать три вида дросселей: простые дроссели переменного тока, которые часто называют катушками индуктивности с ферромагнитным сердечником, сглаживающие дроссели для выпрямителей и управляемые дроссели, или дроссели насыщения .

Ниже рассматриваются только простые однофазные маломощные дроссели переменного тока.


Рис. 1.1. Типичные конструкции однофазных дросселей открытого исполнения: а - броневой с ленточным магнитопроводом; б - стержневой с ленточными сердечниками и двумя катушками; в - тороидальный; г - броиевой с сердечником штампованных пластин; д - броневой с креплениями из пластмассы.

Дроссели в зависимости от условий работы аппаратуры, для которой они предназначены, могут быть разбиты на три группы:

а) дроссели для аппаратуры, работающей в обычных условиях (температура влажность );

б) дроссели для кратковременной работы в условиях, отличных от обычных;

в) дроссели для радиоэлектронной аппаратуры, длительно работающей в тяжелых условиях - при высокой температуре окружающей среды (до ) или в тропическом климате при влажности 98% и температуре 40° С. Дроссели первой группы имеют, как правило, открытую конструкцию, второй группы - открытую, влагозащищенную и третьей - закрытую, обычно герметизированную. Наиболее типичные дроссели открытого исполнения показаны на рис. 1.1.

Дроссели переменного тока обычно делят по следующим признакам:

а) по мощности - маломощные (до ) и мощные (свыше );

б) по частоте - промышленной (50 гц), повышенной (400-1000 гц) и высокой (свыше 1000 гц);

в) по конструкции машитопровода - броневые, стержневые и тороидальные (в броневых дросселях сердечник охватывает обмотку, а в других - наоборот);


Рис. 1.2. Схематичные изображения трех типов дросселей: а - с замкнутым ферромагнитным сердечником; б - с магнитопроводом, имеющим зазор; в - с разомкнутым магнитопроводом.

г) по конструкции обмоток - катушечные, галетные и др.;

д) по роду материала сердечника - из электротехнической стали или из феррита;

е) по материалу обмотки - из провода или из фольги;

ж) по конструкции - открытые; открытые, но влагозащищенные и закрытые.

Дроссели можно различать и по способу выполнения магнитопровода: с замкнутым ферромагнитным сердечником;

с магнитопроводами, имеющими немагнитные зазоры, и, наконец, с совершенно разомкнутыми магнитопроводами (рис. 1.2). Последние в данной книге не рассматриваются.

Дроссели могут быть подразделены и по виду -амперной характеристики: линеаризированные - с зазором в магнитопроводе или с ненасыщенным замкнутым сердечником, и нелинейные - без зазора в насыщенном магнитопроводе или с сильно насыщенным сердечником с зазором. Нелинейность дросселя иногда регламентируется: квадратичная, степенная и т. д.

Ни одна люминесцентная газоразрядная лампа (бытовой или офисный светильник, уличный фонарь) без дросселя работать не будет. Это своеобразный гаситель или ограничитель напряжения, которое подается в колбу газоразрядной лампы. А точнее сказать, на ее электроды. В принципе, с немецкого так это слово и переводится. Но это не единственная функция данного прибора. Еще дроссель создает пусковое напряжение, которое необходимо для образования электрического разряда между электродами. Именно таким образом зажигается люминесцентный источник света. Кстати, пусковое напряжение краткосрочное, длится доли секунды. Итак, дроссель – это прибор, который отвечает и за включение лампы, и за ее нормальную работу.

Дроссель — прибор, отвечающий за нормальную работу ламп

Принцип работы

Необходимо сразу оговориться, что в основе принципа работы этого прибора лежит самоиндукция катушки. Если рассмотреть устройство дросселя, то это обычная катушка, которая работает по типу электрического трансформатора. То есть, можно смело применять в разговоре термин дроссель трансформатор. Хотя в конструкции лежит всего лишь одна обмотка.

По сути, катушка – это сердечник из стальных или ферромагнитных пластин, которые изолированы друг от друга. Это делается специально для того, чтобы не образовались токи Фуко, которые создают большие помехи. У такой катушки очень большая индуктивность. При этом она на самом деле выступает мощным сдерживающим барьером при снижении напряжения в сети, а особенно при его сильном росте.



Но именно эта конструкция считается низкочастотной. Почему такое у нее название? Все дело в том, что переменный ток, который протекает в бытовых сетях – это широкий диапазон колебаний: от единицы до миллиарда герц и выше. Пределы диапазона очень велики, поэтому чисто условно колебания разделяют на три группы:

  • Низкие частоты, их еще называют звуковые, имеют диапазон колебаний от 20 Гц до 20 кГц.
  • Ультразвуковые частоты: от 20 кГц до 100 кГц.
  • Сверхвысокие частоты: свыше 100 кГц.

Так вот вышеописанная конструкция – это низкочастотный дроссель трансформатор. Что касается высокочастотных приборов, то их конструкция отличается отсутствием сердечника. Вместо них, как основа навивки медного провода, используются пластиковые каркасы или обычные резисторы. При этом сам дроссель трансформатор представляет собой секционную (многослойную) навивку.



По устройству дроссель — это обычная катушка, которая работает по типу электрического трансформатора

Дроссели очень тщательно рассчитываются по задаваемым параметрам, которые будут поддерживать работу ламп дневного света. Особенно это касается начала свечения, где необходимо разрядом пробить газовую среду. Здесь требуется высокое напряжение. После чего прибор, наоборот, становится сдерживающим устройством. Ведь для того, чтобы лампа светилась, большого напряжения не надо. Отсюда и экономичность светильников данного типа.

Сердечник для дросселя

Материал для сердечника также представлен несколькими позициями. Его выбор лежит в основе габаритов самого дросселя. К примеру, магнитный сердечник – это возможность уменьшить размеры дросселя до минимума. При этом показатели индуктивности не изменяются.

Оптимальный вариант для высокочастотных приборов – это сердечники из магнитодиэлектрических сплавов или феррита. Кстати, именно сплавы позволяют использовать сердечники данного типа практически во всех диапазонах.


Характеристики

Выбирать дроссель трансформатор надо по нескольким характеристикам, главная из которых – индуктивность (измеряется в генри Гн). Но кроме этого еще есть и другие:

  • Сопротивление. Учитывается при постоянном токе.
  • Изменение напряжения (допустимого).
  • Ток подмагничивания, применяется номинальное значение.

Разновидность дросселей

Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.

А вот лампа МГЛ может работать и от дросселя лампы ДРЛ, и от ДНАТ. Но тут есть один момент. Яркость свечения данного источника света будет зависеть от подаваемого напряжения. Да и цветовая температура будет разной.

Внимание! Любой дроссель трансформатор по сроку эксплуатации «переживет» несколько ламп. Конечно, при оговорке, что эксплуатация светильника проводится правильно.



Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:

  1. Произойдет обрыв обмотки катушки, что приведет к отключению подачи напряжения на электроды.
  2. Произойдет замыкание катушки. А это подключение лампы напрямую к сети переменного тока. Лампа перегорит – это точно, а может и взорваться, что приведет к порче светильника в целом.

Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться. Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.



Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.

Разделение по назначению

По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.

  1. Однофазные. Их используют в светильниках бытовых и офисных с подключением к сети в 220 вольт.
  2. Трехфазные. Подключаются к сети 380 вольт. К ним относятся лампы ДРЛ и ДНАТ.

По месту установки эти приборы делятся также на две группы:

  1. Встраиваемые. Их еще называют открытыми. Такие дроссели устанавливают в корпус светильника, который защищает его и от влаги, и от пыли, и от ветра.
  2. Закрытые (герметичные, влагозащищенные). У этих приборов есть специальный короб, защищающий их. Такие модели можно устанавливать на улице под открытым небом.


Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.

Внимание! Если на дросселе всего три цветных кольца, то по умолчанию принимается, что его допуск составляет 20%.

Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).

Заключение по теме

Итак, нами было проведено определение значения дросселя, его устройство, принцип работы и классификация. Как показывает практика, это устройство может работать десятилетиями, если правильно эксплуатировать сам светильник. Даже самые большие скачки напряжения дроссель прекрасно гасит. А, значит, лампа будет светить долго и без проблем.

Похожие записи:

Включение и нормальное функционирование любых осветительных приборов невозможно без наличия в электрической системе специального механизма, выполняющего роль регулятора и ограничителя напряжения. Средством, способным создать краткосрочное пусковое напряжение для возникновения электрического разряда, позволяющего включать люминесцентные источники света, является дроссель. Это механизм, наличие которого необходимо в каждой электрической цепи, включающей лампы и другие осветительные приборы.

Принцип работы

Дроссель - это один из элементов цепи, задача которого состоит в уменьшении воздействия токов с определенными диапазонами частот. Механизм способен их задерживать на некоторое время, обеспечивая предотвращение резких перепадов тока. По закону самоиндукции на выходе создается дополнительное краткосрочное пусковое напряжение, которое необходимо для зажигания люминесцентных ламп. Оно длится доли секунды, но этого вполне хватает для зажигания осветительных приборов.

Функции

Дроссель - это катушка индуктивности, для которой характерны высокие показатели сопротивляемости к переменному току и низкие - к постоянному, что позволяет ей защищать источники питания от скачков электрического напряжения в цепи, различных помех, а также создавать электрический разряд, необходимый для начала работы люминесцентных ламп. Благодаря такой способности приборы как регуляторы очень востребованы в случаях, когда в электрической системе, вследствие подключения усилительных устройств, возможно возникновение тока высоких частот.

Дроссель - это устройство для полноценного функционирования люминесцентных приборов.

Характеристика дросселя

Прибор является маленьким электрическим трансформатором. Его выбор, характеристика и внешнее оформление зависят от частот, для которых он предназначен.


Дроссель - это регулятор напряжения в сети, содержащий сердечник, который состоит из изолированных друг от друга стальных пластинок (материал - магнитодиэлектрические сплавы или феррит). Его использование позволяет уменьшить габариты дросселя без снижения его индуктивных показателей.

Покрывается сердечник специальной обмоткой. Она состоит из одного или нескольких витков изолированного провода. Ее функция - пропускать через себя электрические сигналы к дросселю для осуществления дальнейшего противодействия - уменьшения или распределения между источниками в электрической цепи. Количество витков зависит от частот, в которых функционирует дроссель.

Для регулирования силы тока низких частот используются дроссели с одной обмоткой, а для высоких - катушки с несколькими обмотками. Это обусловлено тем, что катушка выступает в качестве барьера при внезапном увеличении напряжения в электрической сети. При высоком росте напряжения или его резком снижении увеличивается риск перегорания лампочек, и тем целесообразнее использовать дроссели с большим количеством витков.


Некоторые высокочастотные устройства могут быть без сердечников. Провода в таких регуляторах наматываются на каркас из пластика.

Разновидности

В зависимости от частот токов, используемых в электрической цепи, дроссели бывают:

  • Низкочастотные . Они используются при частотах, не превышающих 20 кГц. Такая частота в радио- и электротехнике считается звуковой.
  • Переменные . Используются для участков ультразвуковых частот, не превышающих 100 кГц.
  • Высокочастотные . Применимы для частот свыше 100 кГц.

В зависимости от места, в котором выполняется установка дросселей, они бывают двух видов:

  • Открытые . Монтируются в корпусах светильников. Такие дроссели защищены от пыли и влаги.
  • Закрытые . Оснащены специальным защитным коробом, что позволяет свободно монтировать приборы на улице.

В зависимости от вида ламп, для которых они предназначены, различаются приборы:

  • Однофазные . Применяются для люминесцентных источников света в офисных и бытовых электрических сетях с напряжением до 220 вольт.
  • Трехфазные . Используются при подключении ламп ДРЛ и ДНАТ в цепи с напряжением 380 вольт.

При наличии определенных достоинств дроссели имеют недостаток - они склонны к перегреву, который возникает вследствие высокого напряжения. Напряжение способно увеличиваться, когда по истечении времени на электродах испаряется специальное щелочное покрытие. Как результат - обрывается обмотка, и электроды перестают получать необходимое для работы напряжение. Перегревы также приводят к замыканиям внутри катушки, что ведет к перегоранию подключенного источника света, его порче.


Чтобы предотвратить возможные перегорания дросселей, важно следовать правилам эксплуатации люминесцентных ламп и вовремя их заменять.

В этом материале речь идет о различных типах обмоток выпускаемых промышленностью моточных изделий.

Увеличение рабочей частоты и мощности преобразователей приводит к тому, что число витков трансформатора снижается, и они не могут заполнить собой весь слой по ширине намотки. В этом случае вместо обмоточного провода лучше использовать фольгу, причем ее ширина выбирается таким образом, чтобы заполнить по ширине весь слой. Это необходимо для того, чтобы уменьшить индуктивность рассеяния обмотки. Число слоев фольги совпадает с числом витков и остается лишь выбрать толщину фольги. В низкочастотных преобразователях толщину фольги можно выбирать таким образом, чтобы заполнить все окно. При этом уменьшается омическое сопротивление обмотки и, следовательно, потери в ней. Однако в высокочастотных преобразователях это правило перестает действовать из-за поверхностного эффекта. При оценке влияния поверхностного эффекта необходимо учитывать форму тока, которая в некоторых топологиях преобразователей может значительно отличаться от синусоидальной, например в мостовом преобразователе (см. рис. 1 ). Величина индуктивности и емкости фильтра на этом рисунке выбраны для входных и выходных значений, показанных тока и напряжения, показанных там же.


Рис. 1. Мостовой преобразователь


Рис. 2. Окно трансформатора на сердечнике ЕС70

На рисунке 2 показано окно трансформатора на сердечнике ЕС70, первичная и вторичная обмотки состоят из четырех слоев фольги каждая. На рисунке показано, что обмотка заполняет все окно, но едва ли в реальном высокочастотном трансформаторе число слоев и толщина фольги столь велики, чтобы заполнить все окно.
Перед тем как выбрать толщину фольги, необходимо определить токи в обмотках и гармонический состав тока. Лучше всего это сделать с помощью симулятора и заодно предварительно убедиться, что в установившемся процессе при замкнутой петле обратной связи в преобразователе отсутствуют явно выраженные колебания. Симуляцию можно произвести, например, с помощью POWER 4-5-6 . На графиках представлены результаты симуляции.


Рис. 3. Форма тока первичной обмотки трансформатора мостовой схемы

На рисунке 3 показан ток первичной обмотки трансформатора мостовой схемы (см. рис. 1 ) и его гармонический состав при максимальном входном напряжении и максимальной нагрузке. Постоянная составляющая тока, разумеется, отсутствует, частота основной гармоники составляет 50 кГц. Кроме того, в спектре присутствуют две нечетные гармоники частотой 150 и 250 кГц. На рисунке 4 показан ток одной из вторичных полуобмоток. Ток индуктивности фильтра приведен на рисунке 5 . Наибольшее значение имеет постоянная составляющая и пульсация тока с удвоенной рабочей частотой.


Рис. 4. Ток вторичной полуобмотки трансформатора мостовой схемы


Рис. 5. Ток индуктивности фильтра мостовой схемы

Выбор толщины фольги зависит от величины постоянной составляющей тока и значения гармоник переменных составляющих, а также от величины допустимых потерь в обмотках.

Математические методы анализа сложны и не имеют аналитического решения. Можно использовать для анализа кривые Доуэлла , но и этот метод довольно утомителен и громоздок.


Рис. 6. Результаты расчета на симуляторе

Результаты расчета представлены на рисунке 6 . На нем показаны графики зависимости величины потерь от толщины фольги для первичной и вторичной обмоток трансформатора и для обмотки дросселя фильтра. Заметим, что графики для обмоток трансформатора имеют экстремумы типа минимум, а для обмотки дросселя - не имеют.

Для первичной обмотки трансформатора минимальные потери наблюдаются при толщине фольги 0,35 от глубины проникновения, что составляет около 0,2 мм. Поскольку токи вторичной обмотки содержатзначительную постоянную составляющую, для вторичной обмотки номинальная толщина фольги больше и равна примерно половине глубины проникновения на рабочей частоте 50 кГц.

Рис. 7. Окно трансформатора с обмоткой из фольги с толщиной, выбранной по результатам расчета

На рисунке 7 показано окно трансформатора с обмоткой из фольги с указанной выше толщиной. Как видно, заполнение окна меньше 20%. При малом заполнении окна возрастает индуктивность рассеяния. Для ее уменьшения можно усложнить намотку чередованием первичного и вторичного слоев. Однако в этом случае, во-первых, увеличится стоимость, во-вторых, возрастет проходная емкость. Можно также использовать метод намотки «сэндвич» .

Поскольку обмотка дросселя отличается от трансформаторной, т.к. в обмотке дросселя протекает в основном постоянный ток, можно увеличивать толщину фольги обмотки и свести к минимуму в ней потери. В данном случае толщина фольги была выбрана равной 0,7 мм, что составляет 3,4 толщины проникновения при частоте 100 кГц. В этом случае окно дросселя с сердечником RM12 заполняется полностью.

Конструкция дросселей довольно многообразна. Выбор типа дросселя зависит от приложения. Помимо очевидных параметров - индуктивность, максимальный ток, ток насыщения, необходимо учитывать еще и гармонический состав токов, т.к. потери в дросселе на переменном токе существенно превышают потери при постоянном токе.

Если дроссель необходим для цепи постоянного тока, где величина пульсации тока невелика, можно использовать дроссель с сердечником барабанного типа (drum core). Свое название он получил из-за внешнего сходства с соответствующим ударным инструментом. Низкопрофильный сердечник такого дросселя состоит из двух плоских дисков сверху и снизу и узкого стержня между ними. Особенность конструкции обеспечивает больший ток без насыщения сердечника, чем в тороидальном дросселе.



Рис. 8. Дроссель с сердечником барабанного типа

Однако, как видно из рисунка 8 , на котором показан сердечник с обмоткой, применение такого дросселя в цепи переменного или постоянного тока с большими пульсациями нежелательно, т. к. велики потери по переменному току из-за эффекта близости в многослойной обмотке.

Такие дроссели производят в настоящее время многие компании. Среди них - Ferroxcube, малоизвестная компания в России, которая производит миниатюрные сердечники барабанного типа высотой 0,8-3 мм и диаметром 3,5-8 мм из феррита нового типа ЗС92 . Максимальная частота, на которую рассчитан этот материал, достигает 400 кГц, индукция насыщения при 25°С составляет 0,47 Тл, а плотность мощности при 100°С, частоте 100 кГц и индукции 0,2 Тл достигает 350 кВт/м 3 .

Но основная «изюминка» этого феррита заключается в хороших температурных свойствах. При температуре 175°С индуктивность дросселя с таким сердечником уменьшится всего лишь вдвое, тогда как у традиционных ферритов MnZn она упадет до 10% от начальной. Преимущества ферритов ЗС92 над традиционными начинают проявляться при температуре около 120°С.



Рис. 9. Дроссели, испытывающиеся в эксперименте компании West Coast Magnetics

В настоящее время в преобразователях часто используется дроссель с плоской спиральной обмоткой из фольги (см. крайний правый дроссель на рис. 9 ). Подробно дроссель с такой обмоткой рассмотрен в . Там же проведен сравнительный расчет параметров дросселей со спиральной обмоткой из фольги и дросселя с традиционной обмоткой из фольги.

Из этого расчета следует, что при частоте 400 кГц соотношение между сопротивлением обмотки на переменном и постоянном токах для дросселя со спиральной обмоткой составляет R AC = 20,2R DC , а для дросселя с обычной обмоткой из фольги R AC =]0]R DC . При этом в первом случае величина сопротивления составила примерно 11,6 мОм, а во втором - превысила 62 мОм. Преимущество дросселя со спиральной обмоткой объясняется большим расстоянием между слоями. В приведенном выше примере оно было 4 мм, что примерно в 38 раз больше глубины проникновения при частоте 400 кГц. При этом эффект близости практически не проявляется, следовательно, и сопротивление обмотки на переменном токе уменьшается.

Преимущество дросселя со спиральной обмоткой подтверждается и в . В этой работе исследовались дроссели для корректора коэффициента мощности. Испытывались дроссели со спиральной обмоткой, с традиционной обмоткой из фольги и с обмоткой из провода. Минимальное сопротивление R DC = 2,92 мОм оказалось у дросселя со спиральной обмоткой, у двух других дросселей величина сопротивления составила 3,92 мОм. Во всех случаях обмотки состояли из 16 витков.

Интересный эксперимент провели в компании West Coast Magnetics . Инженеры этой компании провели сравнительные испытания дросселей четырех типов (см. рис. 9 ), предназначенных для преобразователей мощностью 1-100 кВт. Слева направо на этом рисунки расположены следующие устройства.

Дроссель на Ш-образном сердечнике с зазором из цинкового феррита с обмоткой из шести слоев медной фольги, изготовленной по фирменной технологии компании. Начальная магнитная проницаемость феррита составляет 2000. Площадь поперечного сечения обмотки дросселя составляет 31600 круговых мил (круговой мил равен площади круга диаметром 1 мил, или 5,07-10 -4 мм 2).
- Тороидальный дроссель из железо-никелевого сплава с малой магнитной проницаемостью и обмоткой из 13 витков провода 10 AWG.
- Тороидальный дроссель из желе-зоникелевого сплава с большим содержанием железа и бифилярной намоткой 10 витков провода 7 AWG.
- Покупные дроссели с плоской спиральной обмоткой. В эксперименте использовались два дросселя этого типа: с 22 витками и сечением обмотки 22600 круговых мил и с 12 витками с сечением обмотки 38200 круговых мил. Испытания проводились при токе
65 А, минимальная индуктивность дросселей при этом токе была не менее 10 мкГн. Схема испытания была довольно проста - резонансная LC-цепочка: параллельно дросселю подключались два последовательно соединенных конденсатора емкостью 0,1 Ф с малым эквивалентным последовательным сопротивлением (ESR). Результаты эксперимента показаны на рисунке 10 с графиками зависимости потерь в дросселе в зависимости от амплитуды пульсаций тока при частотах 100 и 250 кГц. На этом рисунке приняты следующие обозначения для графиков.

1 - дроссель на Ш-образном сердечнике;
2 - дроссель на тороидальном сердечнике с высоким содержанием железа;
3 - дроссель со спиральной обмоткой из 12 витков;
4 - дроссель на тороидальном сердечнике из железоникелевого сплава;
5 - дроссель со спиральной обмоткой из 22 витков.

Как видно из результатов эксперимента, наименьшие потери наблюдались в дросселе, изготовленном по фирменной технологии компании West Coast Magnetics. Неплохие результаты при небольшой амплитуде пульсаций и у дросселя со спиральной намоткой из 12 витков, однако при увеличении амплитуды пульсаций он начинает уступать дросселям на тороидальных сердечниках. Большие потери в дросселе со спиральной обмоткой из 22 витков объяснимы - при увеличении их числа уменьшилось расстояние между слоями и увеличилось влияние эффекта близости.

Заметим, что в двух из трех приведенных в статье примерах дроссель со спиральной намоткой выиграл у дросселя с традиционной намоткой из фольги. Однако в этих примерах сравнение проводилось по сопротивлению обмоток на переменном и постоянном токах, а в третьем примере речь шла о натурном эксперименте, в котором дроссели испытывались в рабочей схеме, т.е. помимо потерь в обмотке учитывались и потери в сердечнике. К тому же, в испытаниях принимали участие дроссели с разным числом витков, причем наименьшее их число было у дросселя West Coast Magnetics, что, скорее всего, во многом и предопределило его результаты.

На основании испытания дросселей от различных производителей еще нельзя делать вывод о преимуществе того или иного типа обмотки. Например, очень многообещающе выглядят последние разработки дросселей со спиральной обмоткой компании Coilcraft, которые не принимали участие в испытаниях.
И все же определенные выводы из этой статьи можно сделать.

Низкопрофильные дроссели с сердечником барабанного типа лучше применять в цепях постоянного тока с незначительной амплитудой пульсации.
- Дроссели с плоской спиральной обмоткой подходят для использования в цепях, где пульсации тока не превышают 5-10%.
- В цепях с большой амплитудой пульсации, например в резонансных преобразователях, желательно использовать дроссели с большой высотой сердечника, т.к. при этом уменьшается число слоев обмотки. Выигрыш в испытаниях компании West Coast Magnetics дросселя собственной конструкции во многом обусловлен самым малым числом слоев обмотки - шестью.
- Если используется сердечник с немагнитным зазором, то во избежание краевых эффектов, желательно удалить этот зазор подальше от проводников обмотки.