Электронные системы безопасности автомобиля. Электронные помощники на автомобилях, которым пока не стоит доверять Электронные системы автомобилей обратная связь

В конструкции системы курсовой устойчивости могут быть реализованы следующие дополнительные функции (подсистемы):гидравлический усилитель тормозов, предотвращения опрокидывания, предотвращения столкновения, стабилизации автопоезда, повышения эффективности тормозов при нагреве, удаления влаги с тормозных дисков и и др.

Все перечисленные системы, в основном, не имеют своих конструктивных элементов, а являются программным расширением системы ESP.

Система предотвращения опрокидывания ROP (Roll Over Prevention) стабилизирует движение автомобиля при угрозе опрокидывания. Предотвращение опрокидывания достигается за счет уменьшения поперечного ускорения путем подтормаживания передних колес и снижения крутящего момента двигателя. Дополнительное давление в тормозной системе создается с помощью активного усилителя тормозов.

Система предотвращения столкновения (Braking Guard) может быть реализована в автомобиле, оснащенном адаптивным круиз-контролем. Система предотвращает опасность столкновения с помощью визуальных и звуковых сигналов, а в критической ситуации - путем нагнетания давления в тормозной системе (автоматического включения насоса обратной подачи).

Система стабилизации автопоезда может быть реализована в автомобиле, оборудованным тягово-сцепным устройством. Система предотвращает рыскание прицепа при движении автомобиля, которое достигается за счет торможения колес или снижения крутящего момента.

Система повышения эффективности тормозов при нагреве FBS (Fading Brake Support, другое наименование - Over Boost) предотвращает недостаточное сцепление тормозных колодок с тормозными дисками, возникающее при нагреве, путем дополнительного увеличения давления в тормозном приводе.

Система удаления влаги с тормозных дисков активируется на скорости свыше 50км/ч и включенных стеклоочистителях. Принцип работы системы заключается в кратковременном повышении давления в контуре передних колес, за счет чего тормозные колодки прижимаются к дискам и происходит испарение влаги.

Системы-ассистенты водителя

Функции, или системы, поддержки водителя предназначены для помощи водителю при выполнении определённых маневров или в определённых ситуациях. Таким образом они повышают удобство управления автомобилем и его безопасность. Такие системы как правило не вмешиваются в управление в критических ситуациях, а включены всегда и могут при желании быть отключены.

Ассистент движения на спуске

Ассистент движения на спуске, называемый также HDC (от англ. Hill Descent Control) помогает водителю при движении по горным дорогам. Когда автомобиль находится на наклонной плоскости, действующая на него сила тяжести раскладывается, по правилу параллелограмма, на нормальную и параллельную составляющие.

Последняя представляет собой действующую на автомобиль скатывающую силу. Если на автомобиль действует собственная сила тяги, то она добавляется к скатывающей силе. Скатывающая сила действует на автомобиль постоянно, независимо от скорости автомобиля. Вследствие этого автомобиль, скатывающийся по наклонной плоскости, будет всё время ускоряться, т. е. двигаться тем быстрее, чем дольше он скатывается.


Принцип работы:

Ассистент движения на спуске задействуется при выполнении следующих условий:

Скорость автомобиля меньше 20 км/час,

Уклон превышает 20-,

Двигатель работает,

Ни педаль газа, ни педаль тормоза не нажаты.

Если эти условия выполнены и получаемые ассистентом движения на спуске данные о положении педали акселератора, оборотах двигателя и скорости вращения колёс свидетельствуют о увеличении скорости автомобиля, ассистент исходит из того, что автомобиль скатывается на спуске и необходимо задействовать тормоза. Система начинает работать со скорости, которая слегка превышает скорость пешехода.

Скорость автомобиля, которую тормозной ассистент должен (с помощью подтормаживания всех колёс) поддерживать, зависит от скорости, с которой было начато движение на спуске, и включённой передачи. В этом случае ассистент движения на спуске включает насос обратной подачи. Клапаны высокого давления и впускные клапаны ABS открываются, а выпускные клапаны ABS и переключающие клапаны закрываются. В тормозных цилиндрах колёс создаётся тормозное давление, и автомобиль замедляется. Когда скорость автомобиля снизится до того значения, которое необходимо удерживать, ассистент движения на спуске прекращает подтормаживание колёс и вновь снижает давление в тормозной системе. Если после этого скорость начинает увеличиваться (при том, что педаль акселератора остаётся не нажатой), ассистент исходит из того, что автомобиль по-прежнему движется по спуску. Таким образом, скорость автомобиля постоянно удерживается в безопасном диапазоне, который легко может управляться и контролироваться водителем.

Кажется, человечество уже давно вошло в мир электронных технологий. Силиконовый век начался очень бурным развитием и кажется, ничто не может остановить этот бег современности. Все электронные гаджеты крайне прочно вошли в жизнь современного человека и дают, мнимый полный контроль во многих ситуациях в жизни. Почему мнимый? Ну, давайте посмотрим. Постараемся дать ответы на интересующие вопросы.

Электронные помощники на автомобилях.

Многие автомобилисты покупая современные автомобиля, особенно когда до этого они ездили на машинах более низкого класса, либо старых автомобилях, не имевших подобных систем, сталкиваются с одной и той же проблемой, у всех них отмечается одна интересная черта. Они чрезмерно начинают доверять автомобилю, вверяют его системам свою безопасность и управление машиной, ошибочно полагая, что девайсы, установленные на них, могут предотвратить серьезную аварию и на них можно всецело положиться.

Такой подход приводит к тому, что водители начинают пренебрегать правилами безопасности, превышают скорость, используют свои мобильные телефоны прямо за рулем, не задумываясь о последствиях и возможных проблемах.

Автовладельцы считают, что автомобиль не только защитит их в аварии, но и может вполне себе предотвратить ее. Это большое заблуждение. Современные электронные технологии, хоть и развиваются семимильными шагами, но еще не дошли до мощностей и функционала человеческого мозга. Попросту говоря, самый совершенный компьютер из всех,- это человеческий мозг и ничего лучшего сейчас не существует. Так, что стоит доверять себе, своему опыту, интуиции, реакции, не отвлекаться и быть крайне внимательным за рулем любого автомобиля. Ваши обязанности ни одна электронная система сейчас выполнить не может. И не сможет, по всей видимости, в ближайшие несколько лет, это точно.

Как обещают компании запустят в производство свои автономные автомобили и уже в течение некоторого времени после этого можно будет увидеть серийные образцы автомобилей, передвигающиеся по дорогам общего пользования без необходимости водителю вмешиваться в процесс управления. Но повторимся, как минимум до этого должно пройти еще лет пять. А пока… Пока какими бы высокотехнологичными не казались машины, полностью, на 100%, доверять им не стоит.

Не так давно человеку за рулем приходилось решать сразу много задач, ежесекундно. Но потихоньку, с приходом сперва чисто механических, затем электрических, а в последние несколько десятилетий электронных систем, кажется, что все это уходит в прошлое, теперь автомобиль самостоятельно следит за безопасностью, отнюдь нет.

Данные электронные помощники таят в себе одну, но очень серьезную проблему. Ни для кого не секрет, что техника иногда работает не идеально. Попросту говоря у нее бывают глюки. Даже если в автомобиль производитель установил очень мощные компьютеры с крайне чувствительными надежными датчиками, все равно может произойти непредвиденный сбой, особенно в тех случаях, когда данные получаются от внешних датчиков, которые могут получить повреждения или неправильно интерпретировать внешнюю обстановку.

Плюс к этому, такие технологии пришли на рынок не так давно. Это означает, что автопроизводители сейчас проходят этап проб и ошибок. То есть, как бы серьезно они не подходили к безопасности своих автомобилей, неизвестный просчёт может «всплыть» через год, два, а то и более, в ходе эксплуатации автомобиля. Но так как жизнь всего одна и второго шанса выйти из критической ситуации может и не быть, то нам самим нужно быть предельно внимательными и не доверять слепо, кажущимся идеальным и сверхумным технологиям.

Конечно, некоторые автомобили имеют помимо этой и систему предупреждения столкновений, которая сначала предупредит водителя о надвигающейся опасности, а в крайнем случае применит автоматическое торможение, если водитель не отреагирует вовремя, но с учетом разобранной ситуации аварии вряд ли можно будет избежать.

И это мы не упоминаем даже и мусоре и грязи, которые спокойно могут заблокировать нормальную работу датчиков систему.

Lane Keeping Assist (Система помощи движению по полосе)


Эта использует камеры чтобы «видеть» полосы дороги и сохранять ваш автомобиль на одной из полос. Теоретически эта система может быть полностью автономной, но также как и в вышеописанном случае, не все столь радужно.

Опять же, если вы слишком уверены в эффективности этой системы, то поверьте, скорее всего, она в ближайшие десятки километров сможет отправить вас в кювет или в попутно идущий автомобиль.

Эта система безопасности полагается исключительно на одну вещь, это белые и желтые линии на асфальте. Чтобы она хорошо делала свою работу, ей необходимо их видеть, а там где линии стерты и не видны, то и толку от этой системы не будет никакого. Так что не копайтесь в своем телефоне, когда включаете «Lane Keeping Assist» будьте бдительны и следите за ситуацией на дороге.

Этот тип помощника действительно эффективен лишь в идеально среде, где полосы обозначены правильно или в асфальт вмонтированы дополнительные датчики, по которым ваша машина будет «видеть» свое направление, даже если дорога покрыта снегом.

Blind Spot Monitoring (Система контроля «слепых зон»)


Этот девайс использует датчики или камеры, установленные под каждым из внешних зеркал заднего вида, непрерывно сканирующих «слепую зону». На многих автомобилях этот неприятный эффект «слепой зоны» не позволяет полностью обезопасить вас при перестроении.

Алгоритм работы предельно простой- если рядом в «слепой зоне» автомобиль, то сработавший датчик оповестит об этом загоревшийся пиктограммой на соответствующем из зеркал. Но, как и в предыдущие разы существуют и исключения. На дороге случаются ситуации, в которых датчики не смогут правильно сработать.

Предположим, автомобиль быстро движется позади вас, а затем, в последний момент, резко перестраивается в соседнюю полосу. В такой ситуации датчики могут и не показать наличие постороннего автомобиля в слепой зоне, если вы захотите перестроиться.

Более того, некоторые системы до сих пор не научились обнаруживать мотоциклистов и велосипедистов на улице. Два вида транспортных средств, которые крайне внезапно подкрадываются к бортам вашего автомобиля в городском потоке.

Мы, конечно, не говорим, что эти устройства абсолютно бесполезны, но стоит обращать внимание и мониторить свое окружение, даже если пиктограмма не загорелась. Никогда не знаете, где найдете, где потеряете…

На дорогих автомобилях есть система активного мониторинга «слепых зон», которая возвращает автомобиль обратно в свою полосу, если она замечает движение в «слепой зоне». Но опять же, даже эта система на 100% не сможет избавить от проблем. Ведь завязана она на датчики «Blind Spot Monitoring».

Pedestrian Detection (Система обнаружения пешеходов)


Обычно коррелируется с системой предупреждения столкновений. Камеры и/или датчики, расположенные на машине, постоянно следят за дорогой перед автомобилем и тротуаром. В случае, если стоящие перед пешеходным переходом внезапно выходят на дорогу и водитель не успевает вовремя среагировать, срабатывают автоматически тормоза и автомобиль замирает как вкопанный, не причинив вреда людям.

Но это в идеале. А вдруг на дорогу выбежит ребенок, из-за машины, где система не будет его видеть или даже какой-нибудь спешащий взрослый человек рискнет перебежать дорогу, что произойдет тогда? Почти на 100% можно быть уверенным, автомобиль собьёт человека, вопрос только в том, на какой скорости.

Хоть система и среагирует быстрее, чем простой водитель, физику обмануть не удастся, тормозной путь никто не отменит. Отсюда вывод, не нарушает правила, не превышайте скорость, только в таком случае этот электронный помощник сможет сделать ваш автомобиль безопаснее для пешеходов.

Помните, надеется можно только на себя в этой жизни, тем более когда вы за рулем!

Существует огромное количество систем управления двигателей и их модификаций. Для этого рассмотрим различные варианты ЭСУД, которые когда-либо устанавливались на серийно выпускаемые автомобили.

ЭСУД - это электронная система управления двигателем или по-простому компьютер двигателя. Он считывает данные с датчиков двигателя и передает указания на исполнительные системы. Это делается, что двигатель работал в оптимальном для него режиме и сохранял нормы токсичности и потребления топлива.

Обзор приведём на примере инжекторных автомобилей ВАЗ. Разобьем ЭСУД на некоторые группы по критериям.

Производитель электронной системы управления
Для автомобилей ВАЗ использовались системы управления двигателем компаний Bosch, General Motors и отечественного производства. Если хотите заменить какую-нибудь деталь системы впрыска, например производства Bosch, то это окажется невозможным, т.к. детали невзаимозаменяемые. А вот отечественные детали впрыска топлива иногда оказываются аналогичными деталям иностранного производства.
Разновидности контроллеров
На вазовских автомобилях можно встретить следующие типы контроллеров:
  • Январь 5 - производство Россия;
  • M1.5.4 - производство Bosch;
  • МР7.0 - производство Bosch;
Кажется, что контроллеров не много, а на самом деле все сложней. Для примера, контроллер M1.5.4 для системы без нейтрализатоpa не подходит для системы с нейтрализатором. И они считаются невзаимозаменяемыми. Контроллер МР7.0 для системы "Eвpo-2" не может быть установлен на автомобиль "Евро-3". Хотя установить контроллер МР7.0 для системы "Eвpo-3" на автомобиль с экологическими нормами токсичности "Евро-2" возможно, но для этого потребуется перепрошить программное обеспечение контроллера.
Типы впрыска
По этому параметру можно разделить на систему центрального (одноточечного) и распределенного (многоточечного) впрыска топлива. В системе центрального впрыска форсунка подает топливо во впускной трубопровод перед дроссельной заслонкой. В системах распределенного впрыска каждый цилиндр имеет свою форсунку, которая подает топливо непосредственно перед впускным клапаном.

Системы распределенного впрыска разделяются на фазированные и не фазированные. В не фазированных системах впрыск топлива может осуществляться или всеми форсунками в одно время или парами форсунок. В фазированных системах впрыск топлива осуществляется последовательно каждой форсункой.

Нормы токсичности
В разные времена собирались автомобили, который соответствовали требованиям стандартов по токсичности отработавших газов от "Евро-0" до "Евро-4". Автомобили, который соответствуют нормам "Евро-0" выпускаются без нейтрализаторов, системы улавливания паров бензина, датчиков кислорода.

Отличить автомобиль в комплектации "Евро-3" от автомобиля с комплектацией "Евро-2" можно по наличию датчика неровной дороги, внешнему виду адсорбера, а также по числу датчиков кислорода в выпускной системе двигателя (в комплектации "Евро-2" он один, а в комплектации "Евро-3" их два).

Определения и понятия

Контроллер - главный компонент электронной СУД. Оценивает информацию от датчиков о текущем режиме работы двигателя, выполняет достаточно сложные вычисления и управляет исполнительными механизмами.

Датчик массового расхода воздуха (ДМРВ) - преобразует значение массы воздуха, поступающего в цилиндры, в электрический сигнал.

Датчик скорости - преобразует значение скорости автомобиля в электрический сигнал.

Датчик кислорода - преобразует значение концентрации кислорода в отработавших газах после нейтрализатора в электрический сигнал.

Датчик кислорода управляющий - преобразует значение концентрации кислорода в отработавших газах до нейтрализатора в электрический сигнал.

Датчик неровной дороги - преобразует величину вибрации кузова в электрический сигнал.

Датчик фаз - его сигнал информирует контролер о том, что поршень первого цилиндра находится в ВМТ (верхняя мертвая точка) на такте сжатия топливовоздушной смеси.

Датчик температуры охлаждающей жидкости - преобразует величину температуры охлаждающей жидкости в электрический сигнал.

Датчик положения коленвала - преобразует угловое положение коленвала в электрический сигнал.

Датчик положения дроссельной заслонки - преобразует значение угла открытия дроссельной заслонки в электрический сигнал.

Датчик детонации - преобразует величину механических шумов двигателя в электрический сигнал.

Модуль зажигания - элемент системы зажигания, накапливающий энергию для воспламенения смеси в двигателе и обеспечивает высокое напряжение на электродах свечи зажигания.

Форсунка - элемент системы топливоподачи, обеспечивающий дозирование топлива.

Регулятор давления топлива - элемент системы топливоподачи, обеспечивающий постоянство давления топлива в подающей магистрали.

Адсорбер - главный элемент системы улавливания паров бензина.

Модуль бензонасоса - элемент системы топливоподачи, обеспечивающий избыточное давление в топливной магистрали.

Клапан продувки адсорбера - элемент системы улавливания паров бензина, управляющий процессом продувки адсорбера.

Топливный фильтр - элемент системы топливоподачи, фильтр тонкой очистки.

Нейтрализатор - элемент системы впрыска двигателя для снижения токсичности выхлопных газов. В результате химической реакции с кислородом в присутствии катализатора оксид углерода, углеводороды СН и окислы азота превращаются в азот, воду, а также в двуокись углерода.

Диагностическая лампа - элемент системы бортовой диагностики, которая информирует водителя о наличии неисправности в СУД.

Диагностический разъем - элемент системы бортовой диагностики, для подключения диагностического оборудования.

Регулятор холостого хода - элемент системы поддержания холостого хода, который регулирует на холостом ходу подачу воздуха в двигатель.

Применение электронных систем автоматического управления (ЭСАУ двигате­лем, трансмиссией, ходовой частью и дополнительным оборудова­нием) позволяет:

    снизить расход топлива;

    ток­сичность отработавших газов,

    повысить мощность двигателя,

    актив­ную безопасность автомобиля,

    улучшить условия труда водителя.

Соблюдение требований ограничивающих токсичность отрабо­тавших газов и расход топлива требует поддержания стехиометрического состава горючей смеси, отключения подачи топлива на режиме принудительного ХХ, точного и оптимально­го регулирования момента зажигания или впрыска топлива.

Вы­полнения этих требований невозможность без использования ЭСАУ.

Применяемые ЭСАУ двигателем включают системы управления:

    топливоподачей,

    зажиганием (в бензиновых двигателях),

    клапана­ми цилиндров,

    рециркуляцией отработавших газов.

Наибольшее распространение получили первые две системы.

Системы управления клапанами применяются для отключения группы цилиндров с целью экономии топлива и для регулирования фаз газораспределения. Системы управления рециркуляцией отра­ботавших газов обеспечивают возврат во впускной трубопровод потребного количества отработавших газов для смешивания их со свежей горючей смесью.

ЭСАУ облегчает пуск холодного двигателя, уменьшает время прогрева перед движения.

Антиблокировочные системы позволяют уменьшить в 2 раза тормозной путь на скользкой дороге, исключая воз­никновения заноса.

6.2. Электронное управление двигателем

Электронные системы управления топливоподачей бензиновых двигателей

Применение электронных систем автоматического управления (ЭСАУ) топливоподачей бензиновых двигателей обусловлено не­обходимостью снижения токсичности отработавших газов и повы­шения топливной экономичности двигателей внутреннего сгорания. ЭСАУ позволяют в большей степени оптимизировать процесс сме­сеобразования и делают возможным применение трехкомпонент­ных нейтрализаторов, эффективно работающих при постоянном коэффициенте избытка воздуха а близком к 1.

Кроме того, ЭСАУ двигателем, позволяют повысить приеми­стость автомобиля, надежность холодного пуска, ускорить прогрев и увеличить мощность двигателя.

ЭСАУ топливоподачей бензиновых двигателей разделяют на сис­темы впрыска (во впускной трубопровод или непосредственно в камеру сгорания) и карбюраторные системы с электронным управлением.

Принцип действия системы электронного управления карбюра­тором заключается в согласованном управлении воздушной и дрос­сельной заслонками.

Так система Ecotronic фирмы Bosch поддерживает на большинст­ве режимов стехиометрический состав рабочей смеси, обеспечивает необходимое обогащение смеси на режимах пуска и прогрева двига­теля. В системе предусмотрены функции отключения подачи топлива на принудительном холостом ходу и поддержания на заданном уров­не частоты вращения коленчатого вала на холостом ходу.

Наибольшее распространение получили системы впрыска во впускной трубопровод. Они разделяются на системы с впрыском в зону впускных клапанов и с центральным впрыском (рис. 6.1, где: а - центральный впрыск; б - распределенный впрыск в зону впускных клапанов;в - непосредственный впрыск в цилиндры двигателя; 1 - подача топлива; 2 - подача воздуха; 3 - дроссельная заслонка; 4 - впускной трубопровод; 5 - форсунки; 6 - двигатель).

Система с впрыском в зону впускных клапанов (другое название распределенный или многоточечный впрыск) включает в себя ко­личество форсунок равное числу цилиндров, система с централь­ным впрыском - одну или две форсунки на весь двигатель. Форсун­ки в системах с центральным впрыском устанавливаются в специ­альной смесительной камере, откуда полученная смесь распреде­ляется по цилиндрам. Подача топлива форсунками в системе рас­пределенного впрыска может быть согласована с процессом впуска в каждый цилиндр (фазированный впрыск) и несогласованна - форсунки работают одновременно или группой (нефазированный впрыск).

Системы с непосредственным впрыском из-за сложности конст­рукции долгое время не применялись на бензиновых двигателях. Однако ужесточение экологических требований к двигателям дела­ет необходимым развитие этих систем.

Современные ЭСАУ двигателем объединяют в себе функции управления впрыском топлива и работой системы зажигания, по­скольку принцип управления и входные сигналы (частота вращения, нагрузка, температура двигателя) для этих систем являются общими.

В ЭСАУ двигателем используется программно-адаптивное управление. Для реализации программного управления в ПЗУ бло­ка управления (БУ) записывается зависимость длительности впры­ска (количества подаваемого топлива) от нагрузки и частоты вра­щения коленчатого вала двигателя. На рис. 6.2 представлена обобщенная регулировочная характеристика бензинового двигателя по составу смеси.

Зависимость задается в виде таблицы (характеристической карты) разработанной на ос­новании всесторонних испытаний двигателя. Данные в таблице представлены с определенным шагом, например 5 мин -1 , промежуточные значения БУ получает интерполяцией. Аналогичные табли­цы используются и для определения угла опережения зажигания. Выбор данных из готовых таблиц является более быстрым процес­сом, чем выполнение вычислений.

Непосредственное измерение крутящего момента двигателя на автомобиле связано с большими техническими трудностями, по­этому основным датчиком нагрузки являются датчики расхода воз­духа и (или) датчик давления во впускном трубопроводе. Для опре­деления частоты вращения коленчатого вала двигателя обычно используется счетчик импульсов от датчика положения коленчатого вала индукционного типа или от датчика-распределителя системы зажигания.

Полученные по таблицам значения корректируются в зависимо­сти от сигналов датчиков температуры охлаждающей жидкости, по­ложения дроссельной заслонки, температуры воздуха, а также на­пряжения бортовой сети и других параметров.

Адаптивное управление (управление по обратной связи) исполь­зуется в системах с датчиком кислорода (λ-зондом). Наличие ин­формации о содержании кислорода в отработавших газах позволя­ет поддерживать коэффициент избытка воздуха а (λ) близким к 1. При управлении топливоподачей по ОС БУ первоначально определяет дли­тельность импульсов по данным датчиков нагрузки и частоты вращения КВ двигателя, а сигнал от датчика кислорода используется для точной корректировки. Управление впрыском то­плива по обратной связи осуществляется только на прогретом дви­гателе и в определенном диапазоне нагрузки.

Принцип адаптивного управление применяется также для ста­билизации частоты вращения коленчатого вала в режиме холостого хода и для управления углом опережения зажигания по пределу детонации.

Современные ЭСАУ топливоподачей бензиновых двигателей имеют функцию самодиагностики. БУ проверяет работу датчиков и исполнительных устройств и идентифицируют неисправности. При обнаружении неисправности БУ заносит в память соответствующий код и включает аварийную лампу CHECK ENGINE на панели приборов.

Диагностический прибор позволяет получать информа­цию от БУ:

    считы­вать коды неисправностей;

    определять текущие зна­чения параметров двигателя,

    активизировать исполнительные меха­низмы.

функции диагностического прибора ограничены возможностями БУ.

Применение ЭСАУ повышает надежность работы двигателя за счет обеспечения возможности его работы в «усеченном» режиме. В случае возникновения неисправности в одном или нескольких датчиках, БУ определяет, что их показания не соответствуют действительности и отключает эти датчики. В «усеченном» режиме ра­боты информация от неисправных датчиков замещается эталон­ным значением или косвенно рассчитывается по данным от других датчиков. Например, при неисправности датчика положения дрос­сельной заслонки его показания можно имитировать расчетом по частоте вращения коленчатого вала и расходу воздуха. При выходе из строя одного из исполнительных механизмов используется ин­дивидуальный алгоритм обхода неисправности. При дефекте в це­пи зажигания, например, отключается впрыск в соответствующий цилиндр, с целью предотвращения повреждения каталитического нейтрализатора.

При работе двигателя в «усеченном» режиме возможно сниже­ние мощности, ухудшение приемистости, затрудненный пуск холод­ного двигателя, увеличение расхода топлива и др.

Для компенсации технологического разброса в характеристиках элементов ЭСАУ и двигателя, учета их изменения при эксплуата­ции в программе БУ предусмотрен алгоритм самообучения. Как упоминалось выше, сигнал от датчика кислорода используется для корректировки значения длительности впрыска полученного по таб­лице из ПЗУ БУ. Однако при значительных расхождениях такой процесс занимает много времени.

Самообучение заключается в сохранении в памяти БУ значений коэффициента корректировки. Весь диапазон работы двигателя разбивается, как правило, на четыре характерные зоны обучения:

холостой ход, высокая частота вращения при малой нагрузке, час­тичная нагрузка, высокая нагрузка.

При работе двигателя в любой из зон, происходит корректировка длительности импульсов впрыска до тех пор, пока реальный состав смеси не достигнет оптимального значения. Полученные таким об­разом коэффициенты корректировки характеризуют конкретный двигатель и участвуют в формировании длительности импульса впрыска на всех режимах его работы. Процесс самообучения при­меняется также для управления углом опережения зажигания при наличии обратной связи по детонации. Основная проблема функ­ционирования алгоритма самообучения заключается в том, что ино­гда неправильный сигнал датчика может быть воспринят системой как изменение параметра двигателя. Если ошибка сигнала датчика недостаточно велика, чтобы был зарегистрирован код неисправно­сти, повреждение может остаться необнаруженным. В большинстве систем корректирующие коэффициенты не сохраняются при отклю­чении питания БУ.

Основные электронные системы современного автомобиля

Современный автомобиль уже сложно представить без различных электронных систем управляющих и контролирующих работу различных узлов и агрегатов. В настоящее время широкое распространение получили бортовые системы контроля на базе электронных блоков управления (ЭБУ).
Все электронные блоки по функциональному назначению могут быть классифицированы на три основные системы управления: двигателем; трансмиссией и ходовой частью; оборудованием салона и безопасностью автомобиля.
В мире разработано и серийно выпускается большое разнообразие систем управления двигателями. Эти системы по принципу действия имеют много общего, но и существенно отличаются.
Система управления бензиновым двигателем обеспечивает оптимальную его работу путем управления впрыском. топлива, углом опережения зажигания, частотой вращения коленчатого вала двигателя на холостом ходу и проведения диагностики. Система электронного управления дизельным двигателем контролирует количество впрыскиваемого топлива, момент начала впрыска, ток факельной свечи и т.п.
В электронной системе управления трансмиссией объектом регулирования является главным образом автоматическая трансмиссия. На основании сигналов датчиков угла открытия дроссельной заслонки и скорости автомобиля ЭБУ выбирает оптимальные передаточное число трансмиссии и время включения сцепления. Электронная система управления трансмиссией по сравнению с применявшейся ранее гидромеханической системой повышает точность регулирования передаточного числа, упрощает механизм управления, повышает экономичность и управляемость. Управление ходовой частью включает в себя управление процессами движения, изменения траектории и торможения автомобиля. Они воздействуют на подвеску, рулевое управление и тормозную систему, обеспечивают поддержание заданной скорости движения.
Управление оборудованием салона призвано повысить комфортабельность и потребительскую ценность автомобиля. С этой целью используются кондиционер воздуха, электронная панель приборов, мультифункциональная информационная система, компас, фары, стеклоочиститель с прерывистым режимом работы, индикатор перегоревших ламп, устройство обнаружения препятствий при движении задним ходом стеклоподъемники, сиденья с изменяемым положением. Электронные системы безопасности включают в себя: противоугонные устройства, аппаратура связи, центральная блокировка замков дверей, режимы безопасности и т.д.

Каждая электронная система современного автомобиля управляется электронным блоком управления ЭБУ (ECU). Они относятся к тормозам, трансмиссии, подвеске, системе охраны, климатической установке, навигации и прочему. По набору функций ECU подобны друг другу настолько, насколько подобны соответствующие системы управления. Фактические отличия могут быть велики, но вопросы электропитания, взаимодействия с реле и прочими соленоидными нагрузками идентичны для самых разных ECU. Один из самых важных - это блок управления двигателем. Перечень изображенных электронных блоков управления (ЭБУ) определяет разнообразие установленних электронных систем, в даном случае на примере Audi A6

Многообразие ЭБУ в современном автомобиле на примере Audi A6

1. Блок управления автономного отопителя
2. Блок управления АБС тормозов с EDS
3. Блок управления системы поддержания безопасной дистанциии
4. Передатчик системы контроля давления в шинах, передний левый
5. Блок управления бортовой сетью
6. Блок управления в двери водителя
7. Блок управления доступом и старта
8. Блок управления в комбинации приборов
9. Блок управления электронными приборами на рулевой колонке
10. Блок управления телефоном, системой телематик
11. Блок управления двигателем
12. Блок управления Climatronic
13. Блок управления регулировкой сиденья с запоминающим устройством и регулировкой рулевой колонки;;
14. Блок управления регулировкой дорожного просвета; блок управления корректором фар
15. CD-чейнджер; CD-ROM-дисковод
16. Блок управления в задней левой двери
17. Блок управления системой Air-Bag
18. Датчик скорости вращения автомобиля вокруг вертикальной осии
19. Блок управления в двери переднего пассажира
20. Блок управления регулировкой сиденья переднего пассажира с запоминающим устройством
21. Блок управления в задней правой двери
22. Передатчик системы контроля давления в шинах, задний левый
23. Радиоприемник стояночного отопителя
24. Блок управления системой навигации с CD-дисководом; блок управления голосовым вводом;;
25. Передатчик системы контроля давления в шинах, задний правый
26. Блок управления системой облегчения парковки
27. Центральный блок управления системой комфорта
28. Блок управления электрическим стояночным "ручным" тормозом
29. Блок управления энергоснабжением (менеджер батареи)

В настоящее время наиболее важным и экономически оправданным является широкое внедрение электронных систем, позволяющих улучшить характеристики и снизить стоимость эксплуатации двигателя и трансмиссии, а также систем для повышения безопасности.

Сегодня никого уже не удивишь обилием электроники в автомобиле, особенно высокого класса. Количество электронных систем и компонентов в автомобиле столь велико и разнообразно что подчас можно запутаться во всем его изобилии.

Э автомобильной электроннике и диагностике неисправностей автомобилей российского и иностранного производства. Здесь Вы найдете описание, устройство и принципы работы всего многообразия электронных систем современного автомобиляя.
Все материалы и программные средства размещенные на сайте и доступные для скачивания являются некоммерческими, распространяются бесплатно. и не предполагают ответственности за возможный ущерб нанесенный Вам или Вашему автомобилю в результате неумелого или некорректного применения материалов и программ.
Приветствуются поправки, дополнения, по тематике сайта. Если у Вас есть программы, статьи или интересные ссылки большая просьба - присылайте.

Е лектронные системы современного авто на примере Audi A6

http://awtoel.narod.ru