Топливные элементы. Устройство, виды, принцип действия топливных элементов

Топливный элемент – это электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне - в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.





Рис. 1. Некоторые топливные элементы


Топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные процессы горения, идущие с большими потерями. Они в результате химической реакции преобразовывают водород и кислород в электричество. В результате этого процесса образуется вода и выделяется большое количество теплоты. Топливный элемент очень похож на аккумулятор, который можно зарядить и затем использовать накопленную электрическую энергию. Изобретателем топливного элемента считают Вильяма Р. Грува, который изобрел его еще в 1839 году. В этом топливном элементе в качестве электролита использовался раствор серной кислоты, а в качестве топлива - водород, который соединялся с кислородом в среде окислителя. До недавнего времени топливные элементы использовались только в лабораториях и на космических аппаратах.





Рис. 2.


В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр., топливные элементы не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибраций. Топливные элементы вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов является то, что они преобразуют химическую энергию топлива напрямую в электричество, теплоту и воду.


Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе топливных элементов являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы собираются в сборки, а затем в отдельные функциональные модули.


Топливные элементы не имеют движущихся частей (по крайней мере, внутри самого элемента), и поэтому они не подчиняются закону Карно. То есть они будут иметь больший, чем 50%, КПД и особенно эффективны при малых нагрузках. Таким образом, автомобили с топливными элементами могут стать (и уже доказали это) более экономичными, чем обычные автомобили в реальных условиях движения.


Топливный элемент обеспечивает выработку электрического тока постоянного напряжения, который может использоваться для привода в действие электродвигателя, приборов системы освещения и других электрических систем в автомобиле.


Есть несколько типов топливных элементов, различающихся используемыми химическими процессами. Топливные элементы обычно классифицируются по типу используемого в них электролита.


Некоторые типы топливных элементов являются перспективными для применения их в качестве силовых установок электростанций, а другие - для портативных устройств или для привода автомобилей.

1. Щелочные топливные элементы (ЩТЭ)

Щелочной топливный элемент - это один из самых первых разработанных элементов. Щелочные топливные элементы (ЩТЭ) – одна из наиболее изученных технологий, используемая с середины 60-х годов ХХ века агентством НАСА в программах «Аполлон» и «Спейс Шаттл». На борту этих космических кораблей топливные элементы производят электрическую энергию и питьевую воду.




Рис. 3.


Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.


В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°С до 220°С. Носителем заряда в ЩТЭ является гидроксильный ион (ОН-), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, теплоту:


Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e


Реакция на катоде: O2 + 2H2O + 4e- => 4OH


Общая реакция системы: 2H2 + O2 => 2H2O


Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых, чем те, что используют в качестве катализаторов для других топливных элементов. Кроме того, ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных.


Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO2, который может содержаться в топливе или воздухе. CO2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они работают на чистом водороде и кислороде.

2. Топливные элементы на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников. Данный процесс разработан в середине 60-х годов ХХ века. С того времени была улучшена технология производства, рабочие показатели и надежность.




Рис. 4.


Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.


При нагреве до температуры 650°C соли становятся проводником для ионов карбоната (CO32-). Эти ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – теплота.


Реакция на аноде: CO32- + H2 => H2O + CO2 + 2e


Реакция на катоде: CO2 + 1/2O2 + 2e- => CO32-


Общая реакция элемента: H2(g) + 1/2O2(g) + CO2(катод) => H2O(g) + CO2(анод)


Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. Преимущество - возможность применять стандартные материалы (листовую нержавеющую сталь и никелевый катализатор на электродах). Побочную теплоту можно использовать для получения пара высокого давления. Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует большого времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода, «отравлению» и пр.


Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 2,8 МВт. Разрабатываются установки с выходной мощностью до 100 МВт.

3. Топливные элементы на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования. Данный процесс был разработан в середине 60-х годов ХХ, испытания проводились с 70-х годов ХХ века. В итоге были увеличены стабильность и рабочие показатели и снижена стоимость.





Рис. 5.


Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H3PO4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, поэтому эти топливные элементы используются при температурах до 150-220 °C.


Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов (МОПТЭ), в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.


Реакция на аноде: 2H2 => 4H+ + 4e


Реакция на катоде: O2(g) + 4H+ + 4e- => 2H2O


Общая реакция элемента: 2H2 + O2 => 2H2O


КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочную теплоту можно быть использовать для нагрева воды и генерации пара атмосферного давления.


Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Простая конструкция, низкая степень летучести электролита и повышенная стабильность - также преимущества таких топливных элементов.


Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 400 кВт. Установки мощностью 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

4. Топливные элементы с мембраной обмена протонов (МОПТЭ)

Топливные элементы с мембраной обмена протонов считаются самым лучшим типом топливных элементов для генерации питания транспортных средств, которое способно заменить бензиновые и дизельные двигатели внутреннего сгорания. Эти топливные элементы впервые использованы НАСА для программы «Джемини». Разработаны и показаны установки на МОПТЭ мощностью от 1Вт до 2 кВт.





Рис. 6.


Электролитом в этих топливных элементах является твердая полимерная мембрана (тонкая пластмассовая пленка). При пропитывании водой этот полимер пропускает протоны, но не проводит электроны.


Топливом является водород, а носителем заряда – ион водорода (протон). На аноде молекула водорода разделяется на ион водорода (протон) и электроны. Ионы водорода проходят сквозь электролит к катоду, а электроны перемещаются по внешнему кругу и производят электрическую энергию. Кислород, который берется из воздуха, подается к катоду и соединяется с электронами и ионами водорода, образуя воду. На электродах происходят следующие реакции: Реакция на аноде: 2H2 + 4OH- => 4H2O + 4eРеакция на катоде: O2 + 2H2O + 4e- => 4OHОбщая реакция элемента: 2H2 + O2 => 2H2O По сравнению с другими типами топливных элементов, топливные элементы с мембраной обмена протонов производят больше энергии при заданном объеме или весе топливного элемента. Эта особенность позволяет им быть компактными и легкими. К тому же рабочая температура – менее 100°C, что позволяет быстро начать эксплуатацию. Эти характеристики, а также возможность быстро изменить выход энергии – лишь некоторые, делающие эти топливные элементы первым кандидатом для использования в транспортных средствах.


Другое преимущество в том, что электролитом является твердое, а не жидкое вещество. Удержать газы на катоде и аноде легче с помощью твердого электролита, поэтому такие топливные элементы более дешевы при производстве. При применении твердого электролита нет таких трудностей, как ориентация, и меньше проблем из-за появления коррозии, что повышает долговечность элемента и его компонентов.





Рис. 7.

5. Твердооксидные топливные элементы (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О2-). Технология использования твердооксидных топливных элементов развивается с конца 50-х годов ХХ века и имеет две конфигурации: плоскостную и трубчатую.


Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочная теплота.





Рис. 8.


Реакция на аноде: 2H2 + 2O2- => 2H2O + 4e


Реакция на катоде: O2 + 4e- => 2O2-


Общая реакция элемента: 2H2 + O2 => 2H2O


КПД производства электрической энергии - самый высокий из всех топливных элементов – около 60%. Помимо этого, высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 70%.


Твердооксидные топливные элементы работают при очень высоких температурах (600°C-1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

6. Топливные элементы с прямым окислением метанола (ПОМТЭ)

Топливные элементы с прямым окислением метанола успешно применяют в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии, на что и нацелено будущее применение таких элементов.


Устройство топливных элементов с прямым окислением метанола схоже с устройством топливных элементов с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Но жидкий метанол (CH3OH) окисляется при наличии воды на аноде с выделением СО2, ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.


Реакция на аноде: CH3OH + H2O => CO2 + 6H+ + 6eРеакция на катоде: 3/2O2 + 6H+ + 6e- => 3H2O Общая реакция элемента: CH3OH + 3/2O2 => CO2 + 2H2O Разработка таких топливных элементов велась с начала90-х годов ХХ века и были увеличены их удельная мощность и КПД до 40%.


Были проведены испытания данных элементов в температурном диапазоне 50-120°C. Из-за низких рабочих температур и отсутствия необходимости использовать преобразователь такие топливные элементы являются лучшим кандидатом для применения как в мобильных телефонах и других товарах широкого потребления, так и в двигателях автомобилей. Их достоинство также - небольшие габариты.

7. Полимерные электролитные топливные элементы (ПЭТЭ)



В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H2O+ (протон, красный) присоединяется к молекуле воды. Молекулы воды представляют проблему изза медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°С.

8. Твердокислотные топливные элементы (ТКТЭ)




В твердокислотных топливных элементах электролит (CsHSO4) не содержит воды. Рабочая температура поэтому составляет 100-300°С. Вращение оксианионов SO42-позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.





Рис. 9.

9. Сравнение важнейших характеристик топливных элементов

Характеристики топливных элементов

Тип топлив­ного эле­мента

Рабочая темпера­тура

Эффектив­ность выра­ботки электро­энергии

Тип топлива

Область при­менения

Средние и большие установки

Чистый водород

установки

Чистый водород

Малые уста­новки

Большинство видов углеводо­родного топлива

Малые, сред­ние и боль­шие уста­новки

Переносные

установки

Чистый водород

Космические

исследова­

Чистый водород

Малые уста­новки



Рис. 10.

10. Использование топливных элементов в автомобилях




Рис. 11.





Рис. 12.





ТОПЛИВНЫЙ ЭЛЕМЕНТ
электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке.
См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ .
Принцип действия. Топливный элемент (рис. 1) состоит из двух электродов, разделенных электролитом, и систем подвода топлива на один электрод и окислителя на другой, а также системы для удаления продуктов реакции. В большинстве случаев для ускорения химической реакции используются катализаторы. Внешней электрической цепью топливный элемент соединен с нагрузкой, которая потребляет электроэнергию.

В изображенном на рис. 1 топливном элементе с кислым электролитом водород подается через полый анод и поступает в электролит через очень мелкие поры в материале электрода. При этом происходит разложение молекул водорода на атомы, которые в результате хемосорбции, отдавая каждый по одному электрону, превращаются в положительно заряженные ионы. Этот процесс может быть описан следующими уравнениями:


Ионы водорода диффундируют через электролит к положительной стороне элемента. Подаваемый на катод кислород переходит в электролит и также реагирует на поверхности электрода с участием катализатора. При соединении его с ионами водорода и электронами, которые поступают из внешней цепи, образуется вода:

В топливных элементах со щелочным электролитом (обычно это концентрированные гидроксиды натрия или калия) протекают сходные химические реакции. Водород проходит через анод и реагирует в присутствии катализатора с имеющимися в электролите ионами гидроксила (OH-) с образованием воды и электрона:

На катоде кислород вступает в реакцию с водой, содержащейся в электролите, и электронами из внешней цепи. В последовательных стадиях реакций образуются ионы гидроксила (а также пергидроксила O2H-). Результирующую реакцию на катоде можно записать в виде:

Поток электронов и ионов поддерживает баланс заряда и вещества в электролите. Образующаяся в результате реакции вода частично разбавляет электролит. В любом топливном элементе часть энергии химической реакции превращается в тепло. Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Большинство реакций в топливных элементах обеспечивают ЭДС около 1 В. Размыкание цепи или прекращение движения ионов останавливает работу топливного элемента. Процесс, происходящий в водородно-кислородном топливном элементе, по своей природе является обратным хорошо известному процессу электролиза, в котором происходит диссоциация воды при прохождении через электролит электрического тока. Действительно, в некоторых типах топливных элементов процесс может быть обращен - приложив к электродам напряжение, можно разложить воду на водород и кислород, которые могут быть собраны на электродах. Если прекратить зарядку элемента и подключить к нему нагрузку, такой регенеративный топливный элемент сразу начнет работать в своем нормальном режиме. Теоретически размеры топливного элемента могут быть сколь угодно большими. Однако на практике несколько элементов объединяются в небольшие модули или батареи, которые соединяются либо последовательно, либо параллельно.
Типы топливных элементов. Существуют различные типы топливных элементов. Их можно классифицировать, например, по используемому топливу, рабочему давлению и температуре, по характеру применения.
Элементы на водородном топливе. В этом типичном описанном выше элементе водород и кислород переходят в электролит через микропористые углеродные или металлические электроды. Высокая плотность тока достигается в элементах, работающих при повышенной температуре (около 250° С) и высоком давлении. Элементы, использующие водородное топливо, получаемое при переработке углеводородного топлива, например природного газа или нефтепродуктов, по-видимому, найдут наиболее широкое коммерческое применение. Объединяя большое число элементов, можно создавать мощные энергетические установки. В этих установках постоянный ток, вырабатываемый элементами, преобразуется в переменный со стандартными параметрами. Новым типом элементов, способных работать на водороде и кислороде при нормальных температуре и давлении, являются элементы с ионообменными мембранами (рис. 2). В этих элементах вместо жидкого электролита между электродами располагается полимерная мембрана, через которую свободно проходят ионы. В таких элементах наряду с кислородом может использоваться воздух. Образующаяся при работе элемента вода не растворяет твердый электролит и может быть легко удалена.



Элементы на углеводородном и угольном топливах. Топливные элементы, которые могут превращать химическую энергию таких широко доступных и сравнительно недорогих топлив, как пропан, природный газ, метиловый спирт, керосин или бензин, непосредственно в электричество, являются предметом интенсивного исследования. Однако пока не достигнуто заметных успехов в создании топливных элементов, работающих на газах, получаемых из углеводородного топлива, при нормальной температуре. Для повышения скорости реакции углеводородного и угольного топлива приходится повышать рабочую температуру топливного элемента. Электролитами служат расплавы карбонатов или других солей, которые заключаются в пористую керамическую матрицу. Топливо "расщепляется" внутри элемента с образованием водорода и оксида углерода, которые поддерживают протекание токообразующей реакции в элементе. Элементы, работающие на других видах топлива. В принципе реакции в топливных элементах не обязательно должны быть реакциями окисления обычных топлив. В перспективе могут быть найдены и другие химические реакции, которые позволят осуществить эффективное непосредственное получение электричества. В некоторых устройствах электроэнергия получается при окислении, например, цинка, натрия или магния, из которых изготавливаются расходуемые электроды.
Коэффициент полезного действия. Превращение энергии обычных топлив (угля, нефти, природного газа) в электричество было до сих пор многоступенчатым процессом. Сжигание топлива, позволяющее получить пар или газ, необходимые для работы турбины или двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор, - процесс не очень эффективный. Действительно, коэффициент использования энергии такого превращения ограничен по второму закону термодинамики, и его вряд ли можно существенно поднять выше существующего уровня (см. также ТЕПЛОТА ; ТЕРМОДИНАМИКА). Коэффициент использования энергии топлива самых современных паротурбинных энергетических установок не превышает 40%. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество, и энергетические установки на топливных элементах, использующие водород из углеводородного топлива, проектируются на КПД 40-45%.
Применения. Топливные элементы могут в недалеком будущем стать широко используемым источником энергии на транспорте, в промышленности и домашнем хозяйстве. Высокая стоимость топливных элементов ограничивала их применение военными и космическими приложениями. Предполагаемые применения топливных элементов включают их применение в качестве переносных источников энергии для армейских нужд и компактных альтернативных источников энергии для околоземных спутников с солнечными батареями при прохождении ими протяженных теневых участков орбиты. Небольшие размеры и масса топливных элементов позволили использовать их при пилотируемых полетах к Луне. Топливные элементы на борту трехместных кораблей "Аполлон" применялись для питания бортовых компьютеров и систем радиосвязи. Топливные элементы можно использовать в качестве источников питания оборудования в удаленных районах, для внедорожных транспортных средств, например в строительстве. В сочетании с электродвигателем постоянного тока топливный элемент будет эффективным источником движущей силы автомобиля. Для широкого применения топливных элементов необходимы значительный технологический прогресс, снижение их стоимости и возможность эффективного использования дешевого топлива. При выполнении этих условий топливные элементы сделают электрическую и механическую энергию широко доступными во всем мире.
См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ .
ЛИТЕРАТУРА
Багоцкий В.С., Скундин А.М. Химические источники тока. М., 1981 Кромптон Т. Источники тока. М., 1985, 1986

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ТОПЛИВНЫЙ ЭЛЕМЕНТ" в других словарях:

    ТОПЛИВНЫЙ ЭЛЕМЕНТ, ЭЛЕКТРОХИМИЧЕСКИЙ ЭЛЕМЕНТ для непосредственного превращения энергии окисления топлива в электрическую энергию. Соответственно сконструированные электроды погружаются в ЭЛЕКТРОЛИТ, и топливо (например, водород) подается к одному … Научно-технический энциклопедический словарь

    Гальванический элемент, в котором окислительно восстановительная реакция поддерживается непрерывной подачей реагентов (топлива, напр. водорода, и окислителя, напр. кислорода) из специальных резервуаров. Важнейшая составная часть… … Большой Энциклопедический словарь

    топливный элемент - Первичный элемент, в котором электрическая энергия вырабатывается за счет электрохимических реакций между активными веществами, непрерывно поступающими к электродам извне. [ГОСТ 15596 82] EN fuel cell cell that can change chemical energy from… … Справочник технического переводчика

    Прямой метанольный топливный элемент Топливный элемент электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него … Википедия

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливной элементы зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников. Данный процесс был разработан в середине 1960-х гг. С того времени была улучшена технология производства, рабочие показатели и надежность.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO 3 2-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO 3 2- + H 2 => H 2 O + CO 2 + 2e -
Реакция на катоде: CO 2 + 1 / 2 O 2 + 2e - => CO 3 2-
Общая реакция элемента: H 2 (g) + 1 / 2 O 2 (g) + CO 2 (катод) => H 2 O(g) + CO 2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода, "отравлению", и пр.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 2,8 МВт. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования. Данный процесс был разработан в середине 1960-х гг., испытания проводились с 1970-х гг. С того времени была увеличена стабильность, рабочие показатели и снижена стоимость.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H 3 PO 4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H + , протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов (МОПТЭ), в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H 2 => 4H + + 4e -
Реакция на катоде: O 2 (g) + 4H + + 4e - => 2H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО 2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 400 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы с мембраной обмена протонов (МОПТЭ)

Топливные элементы с мембраной обмена протонов считаются самым лучшим типом топливных элементов для генерации питания транспортных средств, которое способно заменить бензиновые и дизельные двигатели внутреннего сгорания. Эти топливные элементы были впервые использованы НАСА для программы "Джемини". Сегодня разрабатываются и демонстрируются установки на МОПТЭ мощностью от 1Вт до 2 кВт.

В качестве электролита в этих топливных элементах используется твердая полимерная мембрана (тонкая пластмассовая пленка). При пропитывании водой этот полимер пропускает протоны, но не проводит электроны.

Топливом является водород, а носителем заряда – ион водорода (протон). На аноде молекула водорода разделяется на ион водорода (протон) и электроны. Ионы водорода проходят сквозь электролит к катоду, а электроны перемещаются по внешнему кругу и производят электрическую энергию. Кислород, который берется из воздуха, подается к катоду и соединяется с электронами и ионами водорода, образуя воду. На электродах происходят следующие реакции:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4OH -
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

По сравнению с другими типами топливных элементов, топливные элементы с мембраной обмена протонов производят больше энергии при заданном объеме или весе топливного элемента. Эта особенность позволяет им быть компактными и легкими. К тому же, рабочая температура – менее 100°C, что позволяет быстро начать эксплуатацию. Эти характеристики, а также возможность быстро изменить выход энергии – лишь некоторые черты, которые делают эти топливные элементы первым кандидатом для использования в транспортных средствах.

Другим преимуществом является то, что электролитом выступает твердое, а не жидкое, вещество. Удержать газы на катоде и аноде легче с использованием твердого электролита, и поэтому такие топливные элементы более дешевы для производства. По сравнению с другими электролитами, при применении твердого электролита не возникает таких трудностей, как ориентация, возникает меньше проблем из-за появления коррозии, что ведет к большей долговечности элемента и его компонентов.

Твердооксидные топливные элементы (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2 -). Технология использования твердооксидных топливных элементов развивается с конца 1950-х гг. и имеет две конфигурации: плоскостную и трубчатую.

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2 -). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H 2 + 2O 2 - => 2H 2 O + 4e -
Реакция на катоде: O 2 + 4e - => 2O 2 -
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60%. Помимо этого, высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 70%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH 3 OH) окисляется при наличии воды на аноде с выделением СО 2 , ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH 3 OH + H 2 O => CO 2 + 6H + + 6e -
Реакция на катоде: 3 / 2 O 2 + 6H + + 6e - => 3H 2 O
Общая реакция элемента: CH 3 OH + 3 / 2 O 2 => CO 2 + 2H 2 O

Разработка данных топливных элементов была начата в начале 1990-х гг. После создания улучшенных катализаторов и, благодаря другим недавним нововведениям, была увеличена удельная мощность и КПД до 40%.

Были проведены испытания данных элементов в температурном диапазоне 50-120°C. Благодаря низким рабочим температурам и отсутствию необходимости использования преобразователя, топливные элементы с прямым окислением метанола являются лучшим кандидатом для применения как в мобильных телефонах и других товарах широкого потребления, так и в двигателях автомобилей. Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы (ЩТЭ)

Щелочные топливные элементы (ЩТЭ) – одна из наиболее изученных технологий, используемая с середины 1960-х гг. агентством НАСА в программах "Аполлон" и "Спейс Шаттл". На борту этих космических кораблей топливные элементы производят электрическую энергию и питьевую воду. Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°С до 220°С. Носителем заряда в ЩТЭ является гидроксильный ион (ОН -), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4OH -
Общая реакция системы: 2H 2 + O 2 => 2H 2 O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. Кроме того, ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO 2 , который может содержаться в топливе или воздухе. CO 2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H 2 O и CH 4 , которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы (ПЭТЭ)


В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H 2 O + (протон, красный) присоединяется к молекуле воды. Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°С.

Твердокислотные топливные элементы (ТКТЭ)


В твердокислотных топливных элементах электролит (C s HSO 4) не содержит воды. Рабочая температура поэтому составляет 100-300°С. Вращение окси анионов SO 4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.



Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные установки
ЩТЭ 50–200°C 40-65% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Сэр Уильям Грове знал много об электролизе, поэтому он выдвинул гипотезу, что путем процесса (который расщепляет воду на составляющие водород и кислород путем проведения электричества через нее) он может производить , если провести его в обратном порядке. После расчётов на бумаге, он подошел к экспериментальной стадии и сумел доказать свои идеи. Доказанную гипотезу развили ученые Людвиг Монд и его помощник Чарльз Лангре, усовершенствовали технологию и еще в 1889 году дали ей название в которые входили два слова- "топливный элемент".

Сейчас это словосочетание крепко вошло в обиход автомобилистов. Вы безусловно слышали этот термин «топливный элемент» и не единожды. В новостях в интернете, по телевизору все чаще мелькают новомодные слова. Обычно они относятся к рассказам о новейших гибридных автомобилях или программах развития этих гибридных автомобилей.

Например, еще 11 лет назад в США была запущена программа "The Hydrogen Fuel Initiative". Программа была направлена ​​на разработку водородных топливных элементов и технологий инфраструктуры, необходимых для того, чтобы сделать транспортные средства использующие топливные элементы практичными и экономически продуманными, рентабельными к 2020 году. Кстати, за это время на программу было выделено более 1 млрд. долларов, что говорит о серьезной ставке, которую сделали власти Штатов на .

По другую сторону океана производители автомобилей также не дремали, начинали или продолжали проводить свои изыскания на тему машин с топливными элементами. , и даже продолжал работать над созданием надежной технологии топливных элементов.

Наибольшего успеха на данном поприще среди всех мировых автопроизводителей добились две японских автопроизводителя, и . Их модели на топливных элементах уже пошли в серийное производство, в тоже время их конкуренты следует прямо за ними.

Поэтому, топливные элементы в автомобильной индустрии- это надолго. Рассмотрим принципы работы технологии и ее применение в современных автомобилях.

Принцип работы топливного элемента


В сущности, . С технической точки зрения определить топливный элемент можно как электрохимическое устройство для преобразования энергии. Он преобразует частицы водорода и кислорода в воду, в процессе попутно производя электричество, постоянный ток.

Существует множество типов топливных элементов, некоторые из них уже используются в автомобилях, другие проходят исследовательские тесты. В большинстве из них используется водород и кислород в качестве основных химических элементов необходимых для преобразования.

Аналогичная процедура происходит в обычной батарее, отличие только в том, что уже имеет все необходимые химические вещества, требуемые для преобразования "на борту", в то время как топливный элемент может быть "заряжаться" от внешнего источника, благодаря чему процесс «производства» электричества может быть продолжен. Помимо водяного пара и электричества, другим побочным продуктом процедуры является выделяемое тепло.


Водородно-кислородный топливный элемент с протонообменной мембраной содержит протонопроводящую полимерную мембрану, которая разделяет два электрода — анод и катод. Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором — платиной или сплавом платиноидов и др. композиции.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

wikipedia.org

Применение в автомобилях

Из всех типов топливных элементов, по- видимому наилучшим кандидатом для применения в транспортных средствах стали топливные элементы на основе протонообменных мембран или как их называют на западе- Polymer Exchange Membrane Fuel Cell (PEMFC). Основными причинами этого являются его высокая удельная мощность и относительно низкая рабочая температура, а это в свою очередь означает, что у него не потребуется много времени для того чтобы привести топливные элементы в рабочий режим. Они оперативно разогреются и начнут производить необходимое количество электроэнергии. В ее основе используется также одна из самых простых реакций из всех типов топливных элементов.

Первое транспортное средство с этой технологией было сделано еще в 1994 году, когда Mercedes-Benz представил MB100 созданный на основе NECAR1 (новый электрический автомобиль 1). Помимо малой выходной мощности (всего 50 киловатт), самый большой недостаток этой концепции заключалась в том, что топливный элемент занимал весь объем грузового отсека фургона.


Кроме того, с точки зрения пассивной безопасности, это была ужасная идея для массового производства, принимая во внимание необходимость установки на борту массивного резервуара, заполненного легковоспламеняющимся водородом под давлением.

В течение следующего десятилетия технология развивалась и одна из последних концепций, созданных на топливных элементах от Мерседес имел выходную мощность 115 л.с. (85 квт) и диапазон действия около 400 километров перед дозаправкой. Конечно, немцы были не единственными пионерами в разработке топливных элементов будущего. Не забывайте про двух японцев, Toyota и . Одним из крупнейших автомобильных игроков стала Honda, который представил серийный автомобиль с силовой установкой на водородных топливных элементах. Продажи FCX Clarity в лизинг на территории США начались летом 2008 года, чуть позже реализация автомобиля перешла в Японию.

Еще дальше пошла Toyota с моделью Mirai, чья прогрессивная система топливных элементов, работающая на водороде, по- видимому способна предоставить футуристичному автомобилю диапазон действия в 520 км на одном баке, который может быть заправляемого менее чем за пять минут, так же как обычный . Показатели расхода топлива поразят любого скептика, они невероятны даже для автомобиля с классической силовой установкой расходует 3.5 литра независимо от того в каких условиях используется автомобиль, в городе, на шоссе или в смешанном цикле.

Прошло восемь лет. Honda потратила это время с пользой для своего дела. Второе поколение Honda FCX Clarity сейчас появляется в продаже. Ее батареи топливных элементов стали на 33% более компактными, чем у первой модели, удельная мощность увеличилась на 60%. Honda уверяет, что топливный элемент и интегрированный силовой агрегат в Clarity Fuel Cell по размерам сравним с двигателем V6, что оставляет достаточно внутреннего пространства для пяти пассажиров и их багажа.


Предполагаемый диапазон составляет 500 км, а стартовая цена новинки должна закрепиться на уровне в $60,000. Дорого? Наоборот, очень даже дешево. В начале 2000 автомобили с подобными технологиями стоили $100.000.

Топливные элементы (электрохимические генераторы) представляют весьма эффективный, долговечный, надежный и экологически чистый метод получения энергии. Изначально их применяли лишь в космической отрасли, но сегодня электрохимические генераторы все активней применяются в различных областях: это источники питания мобильников и ноутбуков, двигатели транспортных средств, автономные источники электроснабжения зданий, стационарные электростанции. Часть этих устройств работает в качестве лабораторных прототипов, часть применяется в демонстрационных целях или проходит предсерийные испытания. Однако многие модели уже применяются в коммерческих проектах и выпускаются серийно.

Устройство

Топливные элементы представляют электрохимические устройства, способные обеспечивать высокий коэффициент преобразования существующей химической энергии в электрическую.

Устройство топливного элемента включает три основные части:

  1. Секция выработки энергии;
  2. Процессор;
  3. Преобразователь напряжения.

Основной частью топливного элемента является секция выработки энергии, которая представляет батарею, выполненную из отдельных топливных ячеек. В структуру электродов топливных ячеек включен платиновый катализатор. При помощи этих ячеек создается постоянный электрический ток.

Одно из таких устройств имеет следующие характеристики: при напряжении 155 вольт выдается 1400 ампер. Размеры батареи составляют 0,9 м в ширину и высоту, а также 2,9 м в длину. Электрохимический процесс в нем осуществляется при температуре 177 °C, что требует нагревания батареи в момент пуска, а также отвода тепла при ее эксплуатации. С этой целью в состав топливного элемента включается отдельный водяной контур, в том числе батарея оснащается специальными охлаждающими пластинами.

В топливном процессе происходит преобразование природного газа в водород, который требуется для электрохимической реакции. Главным элементом топливного процессора является реформер. В нем природный газ (или иное водородсодержащее топливо) взаимодействует при высоком давлении и высокой температуре (порядка 900 °C) с водяным паром при действии катализатора — никеля.

Для поддержания необходимой температуры реформера имеется горелка. Пар, который требуется для реформинга, создается из конденсата. В батарее топливных ячеек создается неустойчивый постоянный ток, для его преобразования применяется преобразователь напряжения.

Также в блоке преобразователя напряжения имеются:

  • Управляющие устройства.
  • Схемы защитной блокировки, которые отключают топливный элемент при различных сбоях.

Принцип действия

Простейший элемент с протонообменной мембраной состоит из полимерной мембраны, которая находится между анодом и катодом, а также катодными и анодными катализаторами. Полимерная мембрана применяется в качестве электролита.

  • Протонообменная мембрана выглядит как тонкое твердое органическое соединение небольшой толщины. Данная мембрана работает как электролит, она в присутствии воды разделяет вещество на отрицательно, а также положительно заряженные ионы.
  • На аноде начинается окисление, а на катоде происходит восстановительный. Катод и анод в PEM-элементе выполнены из пористого материала, он представляет смесь частичек платины и углерода. Платина работает в роли катализатора, что способствует протеканию реакции диссоциации. Катод и анод выполнены пористыми, чтобы кислород и водород сквозь них свободно проходили.
  • Анод и катод находятся между двумя металлическими пластинами, они подводят кислород и водород к катоду и аноду, а отводят электрическую энергию, тепло и воду.
  • Сквозь каналы в пластине молекулы водорода поступают на анод, где осуществляется разложение молекул на атомы.
  • В результате хемосорбции при воздействии катализатора атомы водорода преобразуются в положительно заряженные водородные ионы H+, то есть протоны.
  • Протоны диффундируют к катоду через мембрану, а поток электронов идет к катоду через специальную внешнюю электрическую цепь. К ней подключена нагрузка, то есть потребитель электрической энергии.
  • Кислород, который подается на катод, при воздействии вступает в химическую реакцию с электронами из наружной электрической цепи и ионами водорода из протонообменной мембраны. В результате данной химической реакции появляется вода.

Химическая реакция, происходящая в топливных элементах иных типов (к примеру, с кислотным электролитом в виде ортофосфорной кислоты H3PO4) полностью идентична реакции устройства с протонообменной мембраной.

Виды

На текущий момент известно несколько видов топливных элементов, которые различаются составом применяемого электролита:

  • Топливные элементы на базе ортофосфорной или фосфорной кислоты (PAFC, Phosphoric Acid Fuel Cells).
  • Устройства с протонообменной мембраной (PEMFC, Proton Exchange Membrane Fuel Cells).
  • Твердотельные оксидные топливные элементы (SOFC, Solid Oxide Fuel Cells).
  • Электрохимические генераторы на базе расплавленного карбоната (MCFC, Molten Carbonate Fuel Cells).

На текущий момент большее распространение получили электрохимические генераторы, использующие технологию PAFC.

Применение

Сегодня топливные элементы используются в «Space Shuttle», космических кораблях многоразового использования. В них применяются установки мощностью 12 Вт. Они вырабатывают всю электроэнергию на космическом корабле. Вода, которая образуется при электрохимической реакции, применяется для питья, в том числе для охлаждения оборудования.

Электрохимические генераторы также применялись для энергоснабжения советского «Бурана», корабля многоразового использования.

Топливные элементы находят применение и в гражданской сфере.

  • Стационарные установки мощностью 5–250 кВт и выше. Они находят применение в качестве автономных источников для тепло- и электроснабжения промышленных, общественных и жилых зданий, аварийных и резервных источников электроснабжения, источников бесперебойного питания.
  • Портативные установки мощностью 1–50 кВт. Они применяются для космических спутников и кораблей. Создаются экземпляры для тележек для гольфа, инвалидных колясок, железнодорожных и грузовых рефрижераторов, дорожных указателей.
  • Мобильные установки мощностью 25–150 кВт. Они начинают применяются в военных кораблях и субмаринах, в том числе автомобилях и иных транспортных средствах. Опытные образцы уже создали такие автомобильные гиганты, как «Renault», «Neoplan», «Toyota», «Volkswagen», «Hyundai», «Nissan», ВАЗ, «General Motors», «Honda», «Ford» и другие.
  • Микроустройства мощностью 1–500 Вт. Они находят применение в опытных карманных компьютерах, ноутбуках, бытовых электронных устройствах, мобильниках, современных военных приборах.

Особенности

  • Часть энергии химической реакции в каждом топливном элементе выделяется в виде тепла. Требуется охлаждение. Во внешней цепи поток электронов создает постоянный ток, используемый для совершения работы. Прекращение движения ионов водорода или размыкание внешней цепи приводит к остановке химической реакции.
  • Количество электроэнергии, которую создают топливные элементы, определяется давлением газа, температурой, геометрическими размерами, видом топливного элемента. Для повышения количества электроэнергии, создаваемой реакцией, можно сделать размеры топливных элементов больше, но на практике применяют несколько элементов, которые объединяются в батареи.
  • Химический процесс в некоторых видах топливных элементов может быть обратным. То есть при подаче разности потенциалов на электроды воду можно разложить на кислород и водород, которые будут собираться на пористых электродах. С включением нагрузки подобный топливный элемент будет вырабатывать электрическую энергию.

Перспективы

На текущий момент электрохимические генераторы для использования в качестве главного источника энергии нуждаются в больших первоначальных затратах. При внедрении более стабильных мембран с высокой проводимостью, эффективных и дешевых катализаторов, альтернативных источников водорода, топливные элементы приобретут высокую экономическую привлекательность и будут внедряться повсеместно.

  • Автомобили будут работать на топливных элементах, ДВС в них вообще не будет. В качестве источника энергии будет применяться вода или твердотельный водород. Заправка будет простой и безопасной, а езда экологичной – будет вырабатываться только водяной пар.
  • Все здания будут иметь собственные портативные энергогенераторы, выполненные на топливных элементах.
  • Электрохимические генераторы заменят все аккумуляторы и будут стоять в любой электронике и бытовых приборах.

Достоинства и недостатки

У каждого вида топливного элемента свои недостатки и достоинства. Одни требуют высокого качество топлива, другие имеют сложную конструкцию, нуждаются в высокой рабочей температуре.

В целом же можно указать следующие достоинства топливных элементов:

  • безопасность для окружающей среды;
  • электрохимические генераторы не нужно перезаряжать;
  • электрохимические генераторы могут создавать энергию постоянно, им не важны внешние условия;
  • гибкость в плане масштаба и портативность.

Среди недостатков можно выделить:

  • технические трудности с хранением и транспортом топлива;
  • несовершенные элементы устройства: катализаторы, мембраны и так далее.